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What is 
dependency 
parsing?

• Automatically determining directed 
grammatical and semantic 
relationships between words 

• Semantic: Focused on meaning
• This information is useful for many NLP 

applications, including:
• Coreference resolution
• Question answering
• Information extraction
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How are 
dependency 
grammars 
different 
from CFGs?

• CFGs generate constituent-based 
representations

• Noun phrases, verb phrases, etc.
• These tell us about the syntactic 

structure, rather than the semantic 
relationship between words

• Dependency grammars define 
sentence structure in terms of the 
relationships between individual words

• Nominal subject, direct object, etc.
• For both, labels are still drawn from a 

fixed inventory of grammatical relations

Natalie Parde - UIC CS 421 3



Dependency 
grammars are 
especially 
helpful for 
interpreting 
morphologically 
rich languages 
with a 
relatively free 
word order.
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Morphologically rich: 
Grammatical relationships are 
indicated by changes to words, 
rather than sentence position

Free word order: Words can be 
moved around in a sentence but 
the overall meaning will remain the 
same (less reliance on syntax)

Typically, languages that are 
morphologically richer have less 
strict syntactic rules



This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing

Thursday

Meaning Representations
Model-Theoretic 
Semantics
First-Order Logic



This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing

Thursday

Meaning Representations
Model-Theoretic 
Semantics
First-Order Logic



Typed Dependency Structure

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case
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Comparison with Syntactic Parse

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

I

prefer

the morning

flight

through

Dallas

vs.

S

NP VP

Pronoun Verb NP

Det Nominal

Nominal PP

Nominal Noun Prep. NP

PropN

I prefer

the

morning

Noun flight through

DallasNatalie Parde - UIC CS 421 8



Dependency Relations

• Two components:
• Head
• Dependent

• Heads are linked to the words that are immediately dependent on them
• Relation types describe the dependent’s role with respect to its head

• Subject
• Direct object
• Indirect object
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Dependency Relations

• Relation types tend to correlate with sentence position and constituent type in 
English, but there is not an explicit connection between these elements

• In languages with relatively free word order, the information encoded in these 
relation types often cannot be estimated from constituency trees
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Just like with 
CFGs, there 
are a variety 
of taxonomies 
that can be 
used to label 
dependencies 
between 
words.

https://downloads.cs.stanford.edu/nlp/software/dependen
cies_manual.pdf

https://universaldependencies.org/
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Recently, most researchers have 
moved toward using universal 
dependencies.

• Universal dependencies can be broken into:
• Clausal Relations: Describe syntactic roles that say something about the 

predicate
• Modifier Relations: Describe the ways that words can modify their heads
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Clausal Relations

I prefer the purple plant

nsubj

root
dobj

det

amod
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Modifier Relations
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I prefer the purple plant

nsubj

root
dobj

det

amod
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w.
r.t

. h
ea

d

Structural categories of dependent
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w.
r.t

. h
ea

d

Structural categories of dependent

Natalie wrote a dissertation.
nsubj(wrote, Natalie)

Natalie wrote a dissertation.
obj(wrote, dissertation)

Natalie wrote UIC a dissertation.
iobj(wrote, UIC)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w.
r.t

. h
ea

d

Structural categories of dependent

Natalie wrote a dissertation for UIC.
obl(wrote, UIC)

UIC, read my dissertation!
vocative(read, UIC)

There is nothing but praise for the dissertation.
expl(nothing, there)

You must not eat it, the dissertation.
dislocated(eat, dissertation)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w.
r.t

. h
ea

d

Structural categories of dependent

The purpose of this dissertation is to determine the best 
homework strategy.
nmod(purpose, dissertation)

My school, UIC, is in Chicago.
appos(school, UIC)

UIC has 34,000 students.
nummod(students, 34,000)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w.
r.t

. h
ea

d

Structural categories of dependent

What she said about starting the project 
makes sense.
csubj(makes, said)

She said you should start it now.
ccomp(said, start)

I consider it already done.
xcomp(consider, done)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w.
r.t

. h
ea

d

Structural categories of dependent

He was upset when she read her 
dissertation to him.
advcl(upset, read)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w.
r.t

. h
ea

d

Structural categories of dependent

There is a document discussing the 
assignment.
acl(document, discussing)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w.
r.t

. h
ea

d

Structural categories of dependent

UIC quickly emailed the students about the 
day off.
advmod(emailed, quickly)

She said, “Well, let’s schedule a meeting.”
discourse(schedule, well)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w.
r.t

. h
ea

d

Structural categories of dependent

He read the extensive syllabus.
amod(syllabus, extensive)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w.
r.t

. h
ea

d

Structural categories of dependent

UIC had closed the campus for the break.
aux(closed, had)

It was good to have some time off.
cop(good, was)

They knew that this would refresh everyone for the spring.
mark(refresh, that)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w.
r.t

. h
ea

d

Structural categories of dependent

That was the goal.
det(goal, the)

Everyone went on vacation after that.
case(that, after)
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A word that accompanies a noun to 
reflect some conceptual classification 
of the noun (not used in English)
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Dependency 
Formalisms
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• G = (V, A)
• V is a set of vertices
• A is a set of ordered pairs of vertices, or arcs

• V corresponds to the words in a sentence
• May also include punctuation
• In morphologically rich languages, may 

include stems and affixes
• Arcs capture the grammatical relationships 

between those words

Dependency structures are directed graphs

• Must be connected
• Must have a designated root node
• Must be acyclic

In general, dependency structures:



Dependency Trees

• Directed graphs (such as those we’ve seen already) that satisfy the following 
constraints:

• Single designated root node
• No incoming arcs to the root!

• All vertices except the root node have exactly one incoming arc
• There is a unique path from the root node to each vertex
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How to translate from constituent to 
dependency structures?

Two steps:
1.Identify all head-dependent relations in 

the constituent tree
2.Identify the correct dependency relations 

for those head-dependent pairs

This can by done by:
• Marking the head child of each node in a 

phrase structure, based on a set of rules
• In the dependency structure, make the 

head of each non-head child depend on 
the head of the head child

• However, doing this can 
produce results that are 
far from perfect!

• Most noun phrases do not 
have much (or any) internal 
structure

• Morphological information 
generally isn’t encoded in 
phrase structure trees
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Types of Dependency Parsers

Transition-based
• Build a single tree in a beginning-to-end sweep over the input sentenceTransition

Graph-based
• Search through the space of possible trees for a given sentence, and try 

to find the tree that maximizes some score
Graph
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This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing

Thursday

Meaning Representations
Model-Theoretic 
Semantics
First-Order Logic



Transition-based Dependency 
Parsing

• Earliest transition-based approach: shift-
reduce parsing

• Input tokens are successively shifted 
onto a stack

• The two top elements of the stack are 
matched against a set of possible 
relations provided by some 
knowledge source

• When a match is found, a head-
dependent relation between the 
matched elements is asserted

• Goal is to find a final parse that accounts 
for all words

Oracle

Stack Input BufferDependency Relations

Natalie Parde - UIC CS 421
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Transition-
based 
Parsing

• We can build upon shift-reduce parsing 
by defining transition operators to 
guide the parser’s decisions

• Transition operators work by producing 
new configurations:

• Stack
• Input buffer of words
• Set of relations representing a 

dependency tree

Natalie Parde - UIC CS 421
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Transition-
based 
Parsing

Natalie Parde - UIC CS 421

• Stack contains the ROOT node
• Input buffer is initialized with all 

words in the sentence, in order
• Empty set of relations represents 

the parse

Initial configuration:

• Stack should be empty (except 
ROOT)

• Input buffer should be empty
• Set of relations represents the 

parse

Final configuration:

33



Operators

• The operators used in transition-based parsing then perform one of 
the following tasks:

• Assign the current word as the head of some other word that 
has already been seen

• Assign some other word that has already been seen as the 
head of the current word

• Do nothing with the current word
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Operators

• More formally, these operators are defined as:
• LeftArc: Asserts a head-dependent relation between the 

word at the top of the stack and the word directly beneath 
it (the second word), and removes the second word from 
the stack

• Cannot be applied when ROOT is the second element 
in the stack

• Requires two elements on the stack
• RightArc: Asserts a head-dependent relation between the 

second word and the word at the top of the stack, and 
removes the word at the top of the stack

• Requires two elements on the stack
• Shift: Removes a word from the front of the input buffer 

and pushes it onto the stack

• These operators implement the arc standard approach to 
transition-based parsing
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Arc 
Standard 
Approach 
to 
Transition-
based 
Parsing

• Notable characteristics:
• Transition operators only assert 

relations between elements at the top 
of the stack

• Once an element has been assigned 
its head, it is removed from the stack

• Not available for further 
processing!

• Benefits:
• Reasonably effective
• Simple to implement
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Formal Algorithm: Arc Standard 
Approach
state ← {[root], [words], []}

while state not final:

  # Choose which transition operator to apply

 transition ← oracle(state)

  # Apply the operator and create a new state

 state ← apply(transition, state)
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Process ends when:
• All words in the sentence have been consumed
• The ROOT node is the only element remaining on the stack



This is not an 
example of 
dynamic 
programming!

• The arc standard approach is a greedy 
algorithm

• Oracle chooses a single operation at each 
step

• Parser proceeds with that choice
• No other options explored
• No backtracking

• Single parse returned at the end
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Arc Standard: Example
book me the morning flightInput Buffer

Stack root

Relations
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Arc Standard: Example
me the morning flightInput Buffer

Stack book root

Relations

Only one item in the stack!

Shift book from the input 
buffer to the stack
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Arc Standard: Example
the morning flightInput Buffer

Stack me book root

Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift me from the input 
buffer to the stack
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Arc Standard: Example
the morning flightInput Buffer

Stack book root

(book → me)Relations

Valid options: Shift, 
RightArc, LeftArc

Oracle selects RightArc

Remove me from the stack

Add relation (book → me) to 
the set of relations 
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Arc Standard: Example
morning flightInput Buffer

Stack the book root

(book → me)Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift the from the input 
buffer to the stack
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Arc Standard: Example
flightInput Buffer

Stack morning the book root

(book → me)Relations

Valid options: Shift, 
RightArc, LeftArc

Oracle selects Shift

Shift morning from the input 
buffer to the stack
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Arc Standard: Example
Input Buffer

Stack flight morning the book root

(book → me)Relations

Valid options: Shift, 
RightArc, LeftArc

Oracle selects Shift

Shift flight from the input 
buffer to the stack
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Arc Standard: Example
Input Buffer

Stack flight the book root

(book → me)
(flight → morning)Relations

Valid options: RightArc, 
LeftArc

Oracle selects LeftArc

Remove morning from the 
stack

Add relation (flight → 
morning) to the set of 
relations 
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Arc Standard: Example
Input Buffer

Stack flight book root

(book → me)
(flight → morning)

(flight → the)
Relations

Valid options: RightArc, 
LeftArc

Oracle selects LeftArc

Remove the from the stack

Add relation (flight → the) to 
the set of relations 
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Arc Standard: Example
Input Buffer

Stack book root

(book → me)
(flight → morning)

(flight → the)
(book → flight)

Relations

Valid options: RightArc, 
LeftArc

Oracle selects RightArc

Remove flight from the 
stack

Add relation (book → flight) 
to the set of relations 
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Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: RightArc

Oracle selects RightArc

Remove book from the 
stack

Add relation (root → book) 
to the set of relations 
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Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: None

State is final

book me the morning flight
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A few 
things 
worth 
noting….

• We assumed in the previous example 
that our oracle was always correct 
…this is not necessarily (or perhaps 
not even likely) the case!

• Incorrect choices lead to incorrect 
parses since the algorithm cannot 
perform any backtracking

• Alternate sequences may also lead to 
equally valid parses
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How do we get actual 
dependency labels?

• Parameterize LeftArc and RightArc
• LeftArc(nsubj), RightArc(obj), etc.

• Of course, this makes the oracle’s job 
more difficult (much larger set of 
operators from which to choose!)

iobj(book → me)
compound(flight → morning)

det(flight → the)
obj(book → flight)
root(root → book)
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How does the oracle 
know what to choose?

• Generally, systems use supervised 
machine learning for this task

• This requires a training set of configurations 
labeled with correct transition operators

• The oracle learns which transitions to predict 
for previously-unseen configurations based 
on extracted features and/or representations 
for labeled configurations in the training set
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What types 
of machine 
learning 
models are 
used as 
oracles?

• Commonly:
• Logistic regression
• Support vector machines

• Recently:
• Neural networks
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Neural Network-based Oracle

Natalie Parde - UIC CS 421 55

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations



Neural Network-based Oracle
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flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder



Neural Network-based Oracle
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flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder



Neural Network-based Oracle
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flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Feedforward Neural Network

Softmax



Neural Network-based Oracle
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flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Feedforward Neural Network

Softmax

Shift



This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing

Thursday

Meaning Representations
Model-Theoretic 
Semantics
First-Order Logic



Graph-
based 
Dependency 
Parsing

• Search through the space of possible 
dependency trees for a given sentence, 
attempting to maximize some score

• This score is generally a function of the 
scores of individual subtrees within the 
overall tree

• Edge-factored approaches determine 
scores based on the scores of the 
edges that comprise the tree

• overall_score(t) = ∑!∈# 𝑠𝑐𝑜𝑟𝑒(𝑒)
• Letting t be a tree for a given 

sentence, and e be its edges

Natalie Parde - UIC CS 421 61



Why use 
graph-based 
methods for 
dependency 
parsing?

• Transition-based methods tend to have 
high accuracy for shorter dependency 
relations, but lower accuracy as the 
distance between words increases

• This is largely because transition-based 
methods are greedy (they can be fooled 
by seemingly-optimal local solutions)

• Graph-based methods score entire 
trees, thereby avoiding that issue

Natalie Parde - UIC CS 421
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Maximum Spanning Tree

• Given an input sentence, construct a fully-connected, weighted, 
directed graph

• Vertices are input words
• Directed edges represent all possible head-dependent 

assignments
• Weights reflect the scores for each possible head-dependent 

assignment, predicted by a supervised machine learning model
• A maximum spanning tree represents the preferred dependency 

parse for the sentence, as determined by the weights
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Maximum Spanning Tree: 
Example
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Maximum Spanning Tree: 
Example
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Two things to 
keep in 
mind….
• Every vertex in a spanning 

tree has exactly one 
incoming edge

• Absolute values of the 
edge scores are not critical

• Relative weights of the 
edges entering a 
vertex are what 
matter!
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Natalie Parde - UIC CS 421 66



How do we 
know that 
we have a 
spanning 
tree?

• Given a fully-connected graph G = (V, 
E), a subgraph T = (V, F) is a spanning 
tree if:

• It has no cycles
• Each vertex (except the root) has 

exactly one edge entering it
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How do 
we know 
that we 
have a 
maximum 
spanning 
tree?

• If the greedy selection process produces a 
spanning tree, then that tree is the maximum 
spanning tree

• However, the greedy selection process may 
select edges that result in cycles

• If this happens, we can:
• Collapse cycles into new nodes, with edges that 

previously entered or exited the cycle now entering or 
exiting the new node

• Recursively apply the greedy selection process to the 
updated graph until a (maximum) spanning tree is 
found
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Formal Algorithm
F ← []

T ← []

score’ ← []

for each v in V do:

 bestInEdge ← argmax
!"($,&)∈)

𝑠𝑐𝑜𝑟𝑒[𝑒]

 F ← F ∪ bestInEdge

 for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do:

  score’[e] ← score[e] - score[bestInEdge]

 if T=(V,F) is a spanning tree:

  return T

 else:

  C ← a cycle in F

  G’ ← collapse(G, C)

  T’ ← maxspanningtree(G’, root, score’) # Recursively call the current function

  T ← expand(T’, C)

  return T
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Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 75



Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example
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How do we train our model to 
predict edge weights?

• Similar approach to training the oracle in a transition-based parser
• Feature-based edge scoring models might predict weights based on:

• Words, lemmas, parts of speech
• Corresponding features from contexts before and after words
• Word embeddings
• Dependency relation type
• Dependency relation direction
• Distance from head to dependent

• We can also use neural networks for this process
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Summary: 
Dependency 
Parsing

79
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• Dependency parsing is the process of 
automatically determining directed 
relationships between words in a 
source sentence

• Many dependency tagsets exist, but 
currently the most common tagset is the 
set of universal dependencies

• Dependency parsers can be transition-
based or graph-based

• A popular transition-based method is the 
arc standard approach

• A popular graph-based method is the 
maximum spanning tree approach

• Both make use of supervised machine 
learning to aid the decision-making 
process



This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing

Thursday

Meaning Representations
Model-Theoretic 
Semantics
First-Order Logic



Why do we need 
meaning 
representations?

• Somehow, we need to bridge the gap 
between linguistic input and world 
knowledge to perform semantic 
processing tasks such as:

• Answering essay questions on 
exams

• Deciding what to order at a 
restaurant

• Detecting sarcasm
• Following recipes
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Logical Representations of Meaning

• Goal: Represent commonsense world knowledge in logical form
• There are many ways to represent meaning:

• First-Order Logic
• Semantic networks
• Conceptual dependencies
• Frame-based representations
• All of these approaches assume that meaning representations consist of structures 

composed of symbols
• Symbols: Representational vocabulary
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Sample Meaning Representations
I have a pumpkin.

∃𝑥, 𝑦	Having 𝑥 ∧ 	Haver 𝑥, 𝑆𝑝𝑒𝑎𝑘𝑒𝑟 ∧ HadThing 𝑥, 𝑦 ∧ Pumpkin 𝑦 Having

Haver Had-Thing

Speaker Pumpkin

Having
  Haver:  Speaker
  HadThing: Pumpkin
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Symbols

• Correspond to objects, properties of 
objects, and relations among objects

• Symbols link linguistic input (words) to 
meaning (world knowledge)
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Having
  Haver:  Speaker
  HadThing: Pumpkin



Meaning 
representations 

should be….



Verifiability

• Meaning representations determine the 
relationship between (a) the meaning of a 
sentence and (b) the world as we know it

• Computational systems can verify the truth 
of a meaning representation for a sentence 
by matching it with knowledge base 
representations

• Knowledge Base: A source of information 
about the world
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Verifiability

• Example proposition: Giordano’s serves deep 
dish pizza.

• We can represent this as: Serves(Giordano’s, 
DeepDishPizza)

• To verify the truth of this proposition, we would 
search a knowledge base containing facts about 
restaurants

• If we found a fact matching this, we have verified 
the proposition

• If not, we must assume that the fact is incorrect or, 
at best, our knowledge base is incomplete

Serves(Giordano’s, DeepDishPizza)

Serves(Two Shades, Coffee)

Serves(City Winery, Wine)

Verified!
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Unambiguous 
Representations

• Ambiguity does not stop at syntax!
• Semantic ambiguities are everywhere:

• Sarcasm
• Idiom
• Metaphor
• Hyperbole

• Expressions may have different 
meaning representations depending on 
the circumstances in which they occur
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Unambiguous 
Representations
• Ambiguities arising from figurative language require 

advanced solutions, but many semantic ambiguities 
can also arise from literal expressions

• To resolve semantic ambiguities, computational 
methods must select which from a set of possible 
interpretations is most correct, given the 
circumstances surrounding the linguistic input

Let’s eat somewhere near SEO.

Let’s eat somewhere near SEO.

Let’s devour some building near SEO!

Let’s eat at a restaurant near SEO!
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Vagueness
I want to eat dessert.

Cake?

Cookies?

Ice cream?
Pie?



Canonical Form

• Sentences are ambiguous when they could reasonably be assigned 
multiple meaning representations

• However, multiple sentences could also be assigned the same 
meaning representation

• Giordano’s serves deep dish pizza.
• They have deep dish pizza at Giordano’s.
• Deep dish pizza is served at Giordano’s.
• You can eat deep dish pizza at Giordano’s.
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Inference and Variables

• It’s impossible for a knowledge base to 
comprehensively cover all facts about the world, 
so computational systems also need to be able 
to draw commonsense inferences based on 
meaning representations

• Will people who like deep dish pizza want 
to eat at Giordano’s?

• We don’t have a fact explicitly specifying 
that they do, but we can infer that if they 
like deep dish pizza, they will probably 
like a restaurant that serves it
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Inference

• Inference: A system’s ability to draw valid 
conclusions based on the meaning 
representations of inputs and its store of 
background knowledge

• Systems must be able to draw conclusions 
about the truth of propositions that are not 
explicitly represented in the knowledge base 
but that are logically derivable from the 
propositions that are present
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Variables

• Variables allow you to build propositions without 
requiring a specific instance of something

• Serves(x, DeepDishPizza)
• These propositions can only be successfully 

matched by known instances from a knowledge 
base that would resolve in a truthful entire 
proposition

• Serves(x, DeepDishPizza)
• Serves(Giordano’s, DeepDishPizza) 🙂
• Serves(Two Shades, DeepDishPizza) 🤨
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Expressiveness

• Expressive power: The breadth of 
ideas that can be represented in a 
language

• Meaning representations must be 
expressive enough to handle a wide 
range of subject matter
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This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing

Thursday

Meaning Representations
Model-Theoretic 
Semantics
First-Order Logic



Model-Theoretic Semantics

Natalie Parde - UIC CS 421

What do most meaning 
representation schemes 
share in common?
• An ability to represent objects, 

properties of objects, and 
relations among objects

A model is a formal 
construct that stands for 
a particular state of 
affairs in the world that 
we’re trying to represent

Expressions (words or 
phrases) in the meaning 
representation language 
can be mapped to 
elements of the model
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Relevant Terminology
• Vocabulary

• Non-Logical Vocabulary: Open-ended sets of names for objects, properties, 
and relations in the world we’re representing

• Logical Vocabulary: Closed set of symbols, operators, quantifiers, and links 
that provide the formal means for composing expressions in the language

• Domain: The set of objects that are part of the state of affairs being represented 
in the model

• Each object in the non-logical vocabulary corresponds to a unique element 
in the domain; however, each element in the domain does not need to be 
mentioned in a meaning representation
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Additional 
Terminology
• For a given domain, objects are elements

• grapes, violets, plums, CS421, Usman, Eli
• Properties are sets of elements corresponding to a 

specific characteristic
• purple = {grapes, violets, plums}

• Relations are sets of tuples, each of which contain 
domain elements that take part in a specific relation

• TAFor = {(CS421, Usman), (CS421, Eli)}
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• We create mappings from non-logical 
vocabulary to formal denotations using 
functions or interpretations

• Assume that we have:
• A collection of restaurant patrons and 

restaurants
• Various facts regarding the likes and 

dislikes of patrons
• Various facts about the restaurants

• In our current state of affairs (our model) 
we’re concerned with four patrons 
designated by the non-logical symbols 
(elements) Natalie, Devika, Nikolaos, 
and Mina

• We’ll use the constants a, b, c, and d to 
refer to those respective elements
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Example 
Application • We’re also concerned with three restaurants 

designated by the non-logical symbols 
Giordano’s, IDOF, and Artopolis

• We’ll use the constants e, f, and g to refer to 
those respective elements

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}
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Example 
Application • Finally, we’ll assume that our model deals with 

three cuisines in general, designated by the 
non-logical symbols Italian, Mediterranean, and 
Greek

• We’ll use the constants i, j, and k to refer to 
those elements

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}
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Example 
Application

• Now, let’s assume we need to represent a few 
properties of restaurants:

• Fast denotes the subset of restaurants that are known 
to make food quickly

• TableService denotes the subset of restaurants for 
which a waiter will come to your table to take your 
order

• We also need to represent a few relations:
• Like denotes the tuples indicating which restaurants 

individual patrons like
• Serve denotes the tuples indicating which restaurants 

serve specific cuisines

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}
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Example 
Application

• This means that we have created the domain 
D = {a, b, c, d, e, f, g, i, j, k}

• We can evaluate representations like Natalie 
likes IDOF or Giordano’s serves Greek by 
mapping the objects in the meaning 
representations to their corresponding 
domain elements, and any links to the 
appropriate relations in the model

• Natalie likes IDOF → a likes f → Like(a, f) 🙂
• Giordano’s serves Greek → e serves k → Serve(e, k) 🤨

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}
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Example 
Application

• Thus, we’re just using sets and operations 
on sets to ground the expressions in our 
meaning representations

• What about more complex sentences?
• Nikolaos likes Giordano’s and Devika likes Artopolis.
• Mina likes fast restaurants.
• Not everybody likes IDOF.

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}
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Example 
Application • Plausible meaning representations for the 

previous examples will not map directly to 
individual entities, properties, or relations!

• They involve:
• Conjunctions
• Equality
• Variables
• Negations

• What we need are truth-conditional 
semantics

• This is where first-order logic is useful

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}
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This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing

Thursday

Meaning Representations
Model-Theoretic 
Semantics
First-Order Logic



What is 
first-
order 
logic?



Elements of First-Order 
Logic

• Term: First-order logic device for representing objects
• Constants
• Functions
• Variables

• Common across all types of terms:
• Each one can be thought of as a way of pointing to a specific object
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Elements of First-Order Logic
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Basic 
Elements 
of First-
Order 
Logic
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Variables 
and 
Quantifiers

• Two basic operators in first-order logic are:
• ∃: The existential quantifier

• Pronounced “there exists”
• ∀: The universal quantifier

• Pronounced “for all”
• These two operators make it possible to 

represent many more sentences!
• a restaurant → ∃x Restaurant(x)
• all restaurants → ∀x Restaurant(x)
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We can combine 
these operators 
with other basic 
elements of 
first-order logic 
to build logical 
representations 
of complex 
sentences.

• Nikolaos likes Giordano’s and Devika 
likes Artopolis.

• Like(Nikolaos, Giordano’s) ∧ 
Like(Devika, Artopolis)

• Mina likes fast restaurants.
• ∀x Fast(x) → Like(Mina, x)

• Not everybody likes IDOF.
• ∃x Person(x) ∧	¬Like(x, IDOF)
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Semantics of First-
Order Logic

• Symbols for objects, properties, and 
relations acquire meaning based on 
their correspondences to “real” 
objects, properties, and relations in 
the external world

• We define meaning based on truth-
conditional mappings between 
expressions in a meaning 
representation and the state of 
affairs being modeled
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P Q ¬P P∧Q P∨Q P→Q
False False True False False True

False True True False True True

True False False False True False

True True False True True True



Example: Is the following sentence 
valid according to our model?

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.
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Example: Is the following sentence 
valid according to our model?

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Natalie Parde - UIC CS 421

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

116



Example: Is the following sentence 
valid according to our model?

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)
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Example: Is the following sentence 
valid according to our model?

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)
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Example: Is the following sentence 
valid according to our model?

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)
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Example: Is the following sentence 
valid according to our model?

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

False …not valid!
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A few 
additional 
notes….

• Formulas involving ∃ are true if there is any 
substitution of terms for variables that results 
in a formula that is true according to the 
model

• Formulas involving ∀ are true only if all 
substitutions of terms for variables result in 
formulas that are true according to the model
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How do we 
infer facts 
not 
explicitly 
included in 
the 
knowledge 
base?

• Modus ponens: If a conditional 
statement is accepted (if p then q), and 
the antecedent (p) holds, then the 
consequent (q) may be inferred

• More formally:
𝛼
𝑎 ⇒ 𝛽
𝛽
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Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔
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Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

antecedent holds (our model says that 
Artopolis is a Greek restaurant) ✔
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Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

antecedent holds (our model says that 
Artopolis is a Greek restaurant) ✔

consequent may be inferred 🙂
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Representing States and Events

States: Conditions or 
properties that remain 
unchanged over some 

period of time

Events: Indicate changes 
in some state of affairs



Events can be particularly challenging to 
represent in formal logic!

• You may need to:
• Determine the correct number of roles for the event
• Represent facts about different roles associated with the event
• Ensure that all correct inferences can be derived directly from the event representation
• Ensure that no incorrect inferences can be derived from the event representation

• Some events may theoretically take a variable number of arguments
• Natalie drinks.
• Natalie drinks tea.

• However, predicates in first-order logic have fixed arity (they accept a fixed number of 
arguments)
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How do we 
deal with 
this?

• Make as many different predicates as are needed 
to handle all of the different ways an event can 
behave

• Drink1(Natalie)
• Drink2(Natalie, tea)
• Unfortunately, this can be costly (lots of 

different predicates would need to be stored 
for many words!)

• Another (also not-so-scalable) solution is to use 
meaning postulates

• ∀x,y Drink2(x, y) → Drink1(x)
• Finally, you can allow missing arguments

• ∃x Drink(Natalie, x)
• Drink(Natalie, tea)
• Still not perfect …in the example case, it 

implies that one always has to be drinking a 
specific thing
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Instead of regular variables, we can 
add event variables.

• Event variable: An argument to the event representation that allows for additional 
assertions to be included if needed

• ∃e Drink(Natalie, e)
• If we determine that the actor must drink something specific: ∃e Drink(Natalie, e) ∧ 

Beverage(e, tea)
• More generally, we could define the representation:

• ∃e Drink(e) ∧ Drinker(e, Natalie) ∧ Beverage(e, tea)
• With this change:

• No need to specify a fixed number of arguments for a given surface predicate
• Logical connections are satisfied without using meaning postulates
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Ideally, meaning representations will also 
include information about time and aspect.

• Temporal information:
• Event time
• Reference time
• Time of utterance

• Aspectual information:
• Stative: Event captures an aspect of the world at a single time point

• Natalie knew what she wanted to eat.
• Activity: Event occurs over some span of time

• Natalie is eating.
• Accomplishment: Event has a natural end point and results in a particular state

• Natalie ate lunch at Artopolis.
• Achievement: Event happens in an instant, but still results in a particular state

• Natalie finished her meal.

When Mina leaves, Natalie will eat at Artopolis.
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Description 
Logics
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Description 
Logics

• Represent knowledge about:
• Categories
• Individuals who belong to those 

categories
• Relationships that can hold among 

those individuals
• Terminology: The set of categories 

comprising a given application domain
• Ontology: Hierarchical representation 

of subset/superset relations among 
categories
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Representation
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Restaurant(x) = Restaurant Restaurant(Giordano’s) = 
Restaurant(Giordano’s)

First-order logic Description logics
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Hierarchical 
Structure

• Can be directly specified 
using subsumption relations 
between concepts

• Subsumption: All 
members of category C 
are also members of 
category D, or 𝐶 ⊑ 𝐷
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Commercial 
Establishment

Restaurant

Italian 
Restaurant

Greek 
Restaurant

Mediterranean 
Restaurant

Restaurant
⊑ Commercial	
Establishment

Italian	Restaurant
⊑ Restaurant

Med.	Restaurant
⊑ Restaurant

Greek	Restaurant
⊑ Restaurant
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Category Membership

• Coverage or disjointness can be further specified using logical operators
• Italian	Restaurant	 ⊑ NOT	Greek	Restaurant
• Restaurant	 ⊑
𝐎𝐑	(Italian	Restaurant, Greek	Restaurant,Mediterranean	Restaurant)
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Category Membership

• Relations provide further information about category membership
• Italian	Cuisine	 ⊑ Cuisine
• Italian	Restaurant	 ⊑ Restaurant	 ⊓ ∃hasCuisine.ItalianCuisine	
=	∀𝑥ItalianRestaurant(𝑥) ⟶ Restaurant(𝑥) ∧ (∃𝑦Serves(𝑥, 𝑦) ∧
ItalianCuisine(𝑦))
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Hierarchical 
Structure

• Relations also allow us to explicitly define necessary and 
sufficient conditions for categories

• Italian	Restaurant	 ⊑ Restaurant	 ⊓ ∃hasCuisine.ItalianCuisine
• Greek	Restaurant	 ⊑ Restaurant	 ⊓ ∃hasCuisine.GreekCuisine
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Inference Commercial 
Establishment

Restaurant

Italian 
Restaurant

Greek 
Restaurant

Mediterranean 
Restaurant

Restaurant
⊑ Commercial	
Establishment

Italian	Restaurant
⊑ Restaurant

Med.	Restaurant
⊑ Restaurant

Greek	Restaurant
⊑ Restaurant
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Real-World Example of Description Logics

• Web Ontology Language (OWL)
• Formally specifies semantic categories of 

the internet through the creation and 
deployment of ontologies for application 
areas of interest

• Built using a description logic similar to that 
described in the previous slides
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Summary: 
First-Order 
Logic

• In model-theoretic semantics, the model serves as a formal 
construct representing a particular state of affairs in the world

• First-order logic maps linguistic input to world knowledge 
using logical rules

• Core components of a first-order logic model are:
• Objects
• Properties
• Relations

• We can apply truth-conditional logic (and, or, and not 
operators) to sentences to determine whether they fit a given 
model based on their included terms

• First-order logic makes use of both existential and universal 
quantifiers

• Inferences can be drawn from first-order logic statements using 
modus ponens

• Description logic models semantic domains using subsets of 
first-order logic, restricting expressiveness such that it 
guarantees the tractability of certain kinds of inference
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