
Dependency
Parsing and
Logical
Representations
of Sentence
Meaning
Natalie Parde
UIC CS 421

What is
dependency
parsing?

• Automatically determining directed
grammatical and semantic
relationships between words

• Semantic: Focused on meaning
• This information is useful for many NLP

applications, including:
• Coreference resolution
• Question answering
• Information extraction

Natalie Parde - UIC CS 421 2

How are
dependency
grammars
different
from CFGs?

• CFGs generate constituent-based
representations

• Noun phrases, verb phrases, etc.
• These tell us about the syntactic

structure, rather than the semantic
relationship between words

• Dependency grammars define
sentence structure in terms of the
relationships between individual words

• Nominal subject, direct object, etc.
• For both, labels are still drawn from a

fixed inventory of grammatical relations

Natalie Parde - UIC CS 421 3

Dependency
grammars are
especially
helpful for
interpreting
morphologically
rich languages
with a
relatively free
word order.

Natalie Parde - UIC CS 421 4

Morphologically rich:
Grammatical relationships are
indicated by changes to words,
rather than sentence position

Free word order: Words can be
moved around in a sentence but
the overall meaning will remain the
same (less reliance on syntax)

Typically, languages that are
morphologically richer have less
strict syntactic rules

This
Week’s
Topics

Natalie Parde - UIC CS 421 5

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing

Thursday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

This
Week’s
Topics

Natalie Parde - UIC CS 421 6

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing

Thursday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

Typed Dependency Structure

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

Natalie Parde - UIC CS 421 7

Comparison with Syntactic Parse

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

I

prefer

the morning

flight

through

Dallas

vs.

S

NP VP

Pronoun Verb NP

Det Nominal

Nominal PP

Nominal Noun Prep. NP

PropN

I prefer

the

morning

Noun flight through

DallasNatalie Parde - UIC CS 421 8

Dependency Relations

• Two components:
• Head
• Dependent

• Heads are linked to the words that are immediately dependent on them
• Relation types describe the dependent’s role with respect to its head

• Subject
• Direct object
• Indirect object

Natalie Parde - UIC CS 421 9

Dependency Relations

• Relation types tend to correlate with sentence position and constituent type in
English, but there is not an explicit connection between these elements

• In languages with relatively free word order, the information encoded in these
relation types often cannot be estimated from constituency trees

Natalie Parde - UIC CS 421
10

Just like with
CFGs, there
are a variety
of taxonomies
that can be
used to label
dependencies
between
words.

https://downloads.cs.stanford.edu/nlp/software/dependen
cies_manual.pdf

https://universaldependencies.org/

11

https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf
https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf
https://universaldependencies.org/

Recently, most researchers have
moved toward using universal
dependencies.

• Universal dependencies can be broken into:
• Clausal Relations: Describe syntactic roles that say something about the

predicate
• Modifier Relations: Describe the ways that words can modify their heads

Natalie Parde - UIC CS 421
12

Clausal Relations

I prefer the purple plant

nsubj

root
dobj

det

amod

Natalie Parde - UIC CS 421 13

Modifier Relations

Natalie Parde - UIC CS 421

I prefer the purple plant

nsubj

root
dobj

det

amod

14

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

. h
ea

d

Structural categories of dependent

Natalie Parde - UIC CS 421 15

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

. h
ea

d

Structural categories of dependent

Natalie wrote a dissertation.
nsubj(wrote, Natalie)

Natalie wrote a dissertation.
obj(wrote, dissertation)

Natalie wrote UIC a dissertation.
iobj(wrote, UIC)

Natalie Parde - UIC CS 421 16

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

. h
ea

d

Structural categories of dependent

Natalie wrote a dissertation for UIC.
obl(wrote, UIC)

UIC, read my dissertation!
vocative(read, UIC)

There is nothing but praise for the dissertation.
expl(nothing, there)

You must not eat it, the dissertation.
dislocated(eat, dissertation)

Natalie Parde - UIC CS 421 17

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

. h
ea

d

Structural categories of dependent

The purpose of this dissertation is to determine the best
homework strategy.
nmod(purpose, dissertation)

My school, UIC, is in Chicago.
appos(school, UIC)

UIC has 34,000 students.
nummod(students, 34,000)

Natalie Parde - UIC CS 421 18

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

. h
ea

d

Structural categories of dependent

What she said about starting the project
makes sense.
csubj(makes, said)

She said you should start it now.
ccomp(said, start)

I consider it already done.
xcomp(consider, done)

Natalie Parde - UIC CS 421 19

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

. h
ea

d

Structural categories of dependent

He was upset when she read her
dissertation to him.
advcl(upset, read)

Natalie Parde - UIC CS 421 20

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

. h
ea

d

Structural categories of dependent

There is a document discussing the
assignment.
acl(document, discussing)

Natalie Parde - UIC CS 421 21

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

. h
ea

d

Structural categories of dependent

UIC quickly emailed the students about the
day off.
advmod(emailed, quickly)

She said, “Well, let’s schedule a meeting.”
discourse(schedule, well)

Natalie Parde - UIC CS 421 22

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

. h
ea

d

Structural categories of dependent

He read the extensive syllabus.
amod(syllabus, extensive)

Natalie Parde - UIC CS 421 23

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

. h
ea

d

Structural categories of dependent

UIC had closed the campus for the break.
aux(closed, had)

It was good to have some time off.
cop(good, was)

They knew that this would refresh everyone for the spring.
mark(refresh, that)

Natalie Parde - UIC CS 421 24

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

. h
ea

d

Structural categories of dependent

That was the goal.
det(goal, the)

Everyone went on vacation after that.
case(that, after)

Natalie Parde - UIC CS 421 25

A word that accompanies a noun to
reflect some conceptual classification
of the noun (not used in English)

https://universaldependencies.org/u/dep/index.html

Dependency
Formalisms

Natalie Parde - UIC CS 421 26

• G = (V, A)
• V is a set of vertices
• A is a set of ordered pairs of vertices, or arcs

• V corresponds to the words in a sentence
• May also include punctuation
• In morphologically rich languages, may

include stems and affixes
• Arcs capture the grammatical relationships

between those words

Dependency structures are directed graphs

• Must be connected
• Must have a designated root node
• Must be acyclic

In general, dependency structures:

Dependency Trees

• Directed graphs (such as those we’ve seen already) that satisfy the following
constraints:

• Single designated root node
• No incoming arcs to the root!

• All vertices except the root node have exactly one incoming arc
• There is a unique path from the root node to each vertex

Natalie Parde - UIC CS 421 27

How to translate from constituent to
dependency structures?

Two steps:
1.Identify all head-dependent relations in

the constituent tree
2.Identify the correct dependency relations

for those head-dependent pairs

This can by done by:
• Marking the head child of each node in a

phrase structure, based on a set of rules
• In the dependency structure, make the

head of each non-head child depend on
the head of the head child

• However, doing this can
produce results that are
far from perfect!

• Most noun phrases do not
have much (or any) internal
structure

• Morphological information
generally isn’t encoded in
phrase structure trees

Natalie Parde - UIC CS 421 28

Types of Dependency Parsers

Transition-based
• Build a single tree in a beginning-to-end sweep over the input sentenceTransition

Graph-based
• Search through the space of possible trees for a given sentence, and try

to find the tree that maximizes some score
Graph

Natalie Parde - UIC CS 421 29

This
Week’s
Topics

Natalie Parde - UIC CS 421 30

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing

Thursday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

Transition-based Dependency
Parsing

• Earliest transition-based approach: shift-
reduce parsing

• Input tokens are successively shifted
onto a stack

• The two top elements of the stack are
matched against a set of possible
relations provided by some
knowledge source

• When a match is found, a head-
dependent relation between the
matched elements is asserted

• Goal is to find a final parse that accounts
for all words

Oracle

Stack Input BufferDependency Relations

Natalie Parde - UIC CS 421
31

Transition-
based
Parsing

• We can build upon shift-reduce parsing
by defining transition operators to
guide the parser’s decisions

• Transition operators work by producing
new configurations:

• Stack
• Input buffer of words
• Set of relations representing a

dependency tree

Natalie Parde - UIC CS 421
32

Transition-
based
Parsing

Natalie Parde - UIC CS 421

• Stack contains the ROOT node
• Input buffer is initialized with all

words in the sentence, in order
• Empty set of relations represents

the parse

Initial configuration:

• Stack should be empty (except
ROOT)

• Input buffer should be empty
• Set of relations represents the

parse

Final configuration:

33

Operators

• The operators used in transition-based parsing then perform one of
the following tasks:

• Assign the current word as the head of some other word that
has already been seen

• Assign some other word that has already been seen as the
head of the current word

• Do nothing with the current word

Natalie Parde - UIC CS 421 34

Operators

• More formally, these operators are defined as:
• LeftArc: Asserts a head-dependent relation between the

word at the top of the stack and the word directly beneath
it (the second word), and removes the second word from
the stack

• Cannot be applied when ROOT is the second element
in the stack

• Requires two elements on the stack
• RightArc: Asserts a head-dependent relation between the

second word and the word at the top of the stack, and
removes the word at the top of the stack

• Requires two elements on the stack
• Shift: Removes a word from the front of the input buffer

and pushes it onto the stack

• These operators implement the arc standard approach to
transition-based parsing

Natalie Parde - UIC CS 421 35

Arc
Standard
Approach
to
Transition-
based
Parsing

• Notable characteristics:
• Transition operators only assert

relations between elements at the top
of the stack

• Once an element has been assigned
its head, it is removed from the stack

• Not available for further
processing!

• Benefits:
• Reasonably effective
• Simple to implement

Natalie Parde - UIC CS 421 36

Formal Algorithm: Arc Standard
Approach
state ← {[root], [words], []}

while state not final:

 # Choose which transition operator to apply

 transition ← oracle(state)

 # Apply the operator and create a new state

 state ← apply(transition, state)

Natalie Parde - UIC CS 421 37

Process ends when:
• All words in the sentence have been consumed
• The ROOT node is the only element remaining on the stack

This is not an
example of
dynamic
programming!

• The arc standard approach is a greedy
algorithm

• Oracle chooses a single operation at each
step

• Parser proceeds with that choice
• No other options explored
• No backtracking

• Single parse returned at the end

Natalie Parde - UIC CS 421 38

Arc Standard: Example
book me the morning flightInput Buffer

Stack root

Relations

Natalie Parde - UIC CS 421 39

Arc Standard: Example
me the morning flightInput Buffer

Stack book root

Relations

Only one item in the stack!

Shift book from the input
buffer to the stack

Natalie Parde - UIC CS 421 40

Arc Standard: Example
the morning flightInput Buffer

Stack me book root

Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift me from the input
buffer to the stack

Natalie Parde - UIC CS 421 41

Arc Standard: Example
the morning flightInput Buffer

Stack book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects RightArc

Remove me from the stack

Add relation (book → me) to
the set of relations

Natalie Parde - UIC CS 421 42

Arc Standard: Example
morning flightInput Buffer

Stack the book root

(book → me)Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift the from the input
buffer to the stack

Natalie Parde - UIC CS 421 43

Arc Standard: Example
flightInput Buffer

Stack morning the book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects Shift

Shift morning from the input
buffer to the stack

Natalie Parde - UIC CS 421 44

Arc Standard: Example
Input Buffer

Stack flight morning the book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects Shift

Shift flight from the input
buffer to the stack

Natalie Parde - UIC CS 421 45

Arc Standard: Example
Input Buffer

Stack flight the book root

(book → me)
(flight → morning)Relations

Valid options: RightArc,
LeftArc

Oracle selects LeftArc

Remove morning from the
stack

Add relation (flight →
morning) to the set of
relations

Natalie Parde - UIC CS 421 46

Arc Standard: Example
Input Buffer

Stack flight book root

(book → me)
(flight → morning)

(flight → the)
Relations

Valid options: RightArc,
LeftArc

Oracle selects LeftArc

Remove the from the stack

Add relation (flight → the) to
the set of relations

Natalie Parde - UIC CS 421 47

Arc Standard: Example
Input Buffer

Stack book root

(book → me)
(flight → morning)

(flight → the)
(book → flight)

Relations

Valid options: RightArc,
LeftArc

Oracle selects RightArc

Remove flight from the
stack

Add relation (book → flight)
to the set of relations

Natalie Parde - UIC CS 421 48

Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: RightArc

Oracle selects RightArc

Remove book from the
stack

Add relation (root → book)
to the set of relations

Natalie Parde - UIC CS 421 49

Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: None

State is final

book me the morning flight

Natalie Parde - UIC CS 421 50

A few
things
worth
noting….

• We assumed in the previous example
that our oracle was always correct
…this is not necessarily (or perhaps
not even likely) the case!

• Incorrect choices lead to incorrect
parses since the algorithm cannot
perform any backtracking

• Alternate sequences may also lead to
equally valid parses

Natalie Parde - UIC CS 421 51

How do we get actual
dependency labels?

• Parameterize LeftArc and RightArc
• LeftArc(nsubj), RightArc(obj), etc.

• Of course, this makes the oracle’s job
more difficult (much larger set of
operators from which to choose!)

iobj(book → me)
compound(flight → morning)

det(flight → the)
obj(book → flight)
root(root → book)

Natalie Parde - UIC CS 421 52

How does the oracle
know what to choose?

• Generally, systems use supervised
machine learning for this task

• This requires a training set of configurations
labeled with correct transition operators

• The oracle learns which transitions to predict
for previously-unseen configurations based
on extracted features and/or representations
for labeled configurations in the training set

Natalie Parde - UIC CS 421 53

What types
of machine
learning
models are
used as
oracles?

• Commonly:
• Logistic regression
• Support vector machines

• Recently:
• Neural networks

Natalie Parde - UIC CS 421 54

Neural Network-based Oracle

Natalie Parde - UIC CS 421 55

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

Neural Network-based Oracle

Natalie Parde - UIC CS 421 56

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Neural Network-based Oracle

Natalie Parde - UIC CS 421 57

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Neural Network-based Oracle

Natalie Parde - UIC CS 421 58

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Feedforward Neural Network

Softmax

Neural Network-based Oracle

Natalie Parde - UIC CS 421 59

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Feedforward Neural Network

Softmax

Shift

This
Week’s
Topics

Natalie Parde - UIC CS 421 60

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing

Thursday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

Graph-
based
Dependency
Parsing

• Search through the space of possible
dependency trees for a given sentence,
attempting to maximize some score

• This score is generally a function of the
scores of individual subtrees within the
overall tree

• Edge-factored approaches determine
scores based on the scores of the
edges that comprise the tree

• overall_score(t) = ∑!∈# 𝑠𝑐𝑜𝑟𝑒(𝑒)
• Letting t be a tree for a given

sentence, and e be its edges

Natalie Parde - UIC CS 421 61

Why use
graph-based
methods for
dependency
parsing?

• Transition-based methods tend to have
high accuracy for shorter dependency
relations, but lower accuracy as the
distance between words increases

• This is largely because transition-based
methods are greedy (they can be fooled
by seemingly-optimal local solutions)

• Graph-based methods score entire
trees, thereby avoiding that issue

Natalie Parde - UIC CS 421
62

Maximum Spanning Tree

• Given an input sentence, construct a fully-connected, weighted,
directed graph

• Vertices are input words
• Directed edges represent all possible head-dependent

assignments
• Weights reflect the scores for each possible head-dependent

assignment, predicted by a supervised machine learning model
• A maximum spanning tree represents the preferred dependency

parse for the sentence, as determined by the weights

Natalie Parde - UIC CS 421 63

Maximum Spanning Tree:
Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 64

Maximum Spanning Tree:
Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 65

Two things to
keep in
mind….
• Every vertex in a spanning

tree has exactly one
incoming edge

• Absolute values of the
edge scores are not critical

• Relative weights of the
edges entering a
vertex are what
matter!

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 66

How do we
know that
we have a
spanning
tree?

• Given a fully-connected graph G = (V,
E), a subgraph T = (V, F) is a spanning
tree if:

• It has no cycles
• Each vertex (except the root) has

exactly one edge entering it

Natalie Parde - UIC CS 421 67

How do
we know
that we
have a
maximum
spanning
tree?

• If the greedy selection process produces a
spanning tree, then that tree is the maximum
spanning tree

• However, the greedy selection process may
select edges that result in cycles

• If this happens, we can:
• Collapse cycles into new nodes, with edges that

previously entered or exited the cycle now entering or
exiting the new node

• Recursively apply the greedy selection process to the
updated graph until a (maximum) spanning tree is
found

Natalie Parde - UIC CS 421 68

Formal Algorithm
F ← []

T ← []

score’ ← []

for each v in V do:

 bestInEdge ← argmax
!"($,&)∈)

𝑠𝑐𝑜𝑟𝑒[𝑒]

 F ← F ∪ bestInEdge

 for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do:

 score’[e] ← score[e] - score[bestInEdge]

 if T=(V,F) is a spanning tree:

 return T

 else:

 C ← a cycle in F

 G’ ← collapse(G, C)

 T’ ← maxspanningtree(G’, root, score’) # Recursively call the current function

 T ← expand(T’, C)

 return T

Natalie Parde - UIC CS 421 69

Maximum Spanning Tree:
Updated Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 70

Maximum Spanning Tree:
Updated Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 71

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 72

Maximum Spanning Tree:
Updated Example

root book
12

that-
flight

?

-4
-3

0 -2

-6

-7

-1

Natalie Parde - UIC CS 421 73

Maximum Spanning Tree:
Updated Example

root book
12

that-
flight

-1

-4
-3

0 -2

-6

-7

-1

Natalie Parde - UIC CS 421 74

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 75

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 76

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 77

How do we train our model to
predict edge weights?

• Similar approach to training the oracle in a transition-based parser
• Feature-based edge scoring models might predict weights based on:

• Words, lemmas, parts of speech
• Corresponding features from contexts before and after words
• Word embeddings
• Dependency relation type
• Dependency relation direction
• Distance from head to dependent

• We can also use neural networks for this process

Natalie Parde - UIC CS 421 78

Summary:
Dependency
Parsing

79

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• Dependency parsing is the process of
automatically determining directed
relationships between words in a
source sentence

• Many dependency tagsets exist, but
currently the most common tagset is the
set of universal dependencies

• Dependency parsers can be transition-
based or graph-based

• A popular transition-based method is the
arc standard approach

• A popular graph-based method is the
maximum spanning tree approach

• Both make use of supervised machine
learning to aid the decision-making
process

This
Week’s
Topics

Natalie Parde - UIC CS 421 80

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing

Thursday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

Why do we need
meaning
representations?

• Somehow, we need to bridge the gap
between linguistic input and world
knowledge to perform semantic
processing tasks such as:

• Answering essay questions on
exams

• Deciding what to order at a
restaurant

• Detecting sarcasm
• Following recipes

Natalie Parde - UIC CS 421 81

Logical Representations of Meaning

• Goal: Represent commonsense world knowledge in logical form
• There are many ways to represent meaning:

• First-Order Logic
• Semantic networks
• Conceptual dependencies
• Frame-based representations
• All of these approaches assume that meaning representations consist of structures

composed of symbols
• Symbols: Representational vocabulary

Natalie Parde - UIC CS 421 82

Sample Meaning Representations
I have a pumpkin.

∃𝑥, 𝑦	Having 𝑥 ∧ 	Haver 𝑥, 𝑆𝑝𝑒𝑎𝑘𝑒𝑟 ∧ HadThing 𝑥, 𝑦 ∧ Pumpkin 𝑦 Having

Haver Had-Thing

Speaker Pumpkin

Having
 Haver: Speaker
 HadThing: Pumpkin

Natalie Parde - UIC CS 421 83

Symbols

• Correspond to objects, properties of
objects, and relations among objects

• Symbols link linguistic input (words) to
meaning (world knowledge)

Natalie Parde - UIC CS 421 84

Having
 Haver: Speaker
 HadThing: Pumpkin

Meaning
representations

should be….

Verifiability

• Meaning representations determine the
relationship between (a) the meaning of a
sentence and (b) the world as we know it

• Computational systems can verify the truth
of a meaning representation for a sentence
by matching it with knowledge base
representations

• Knowledge Base: A source of information
about the world

Natalie Parde - UIC CS 421 86

Verifiability

• Example proposition: Giordano’s serves deep
dish pizza.

• We can represent this as: Serves(Giordano’s,
DeepDishPizza)

• To verify the truth of this proposition, we would
search a knowledge base containing facts about
restaurants

• If we found a fact matching this, we have verified
the proposition

• If not, we must assume that the fact is incorrect or,
at best, our knowledge base is incomplete

Serves(Giordano’s, DeepDishPizza)

Serves(Two Shades, Coffee)

Serves(City Winery, Wine)

Verified!

Natalie Parde - UIC CS 421 87

Unambiguous
Representations

• Ambiguity does not stop at syntax!
• Semantic ambiguities are everywhere:

• Sarcasm
• Idiom
• Metaphor
• Hyperbole

• Expressions may have different
meaning representations depending on
the circumstances in which they occur

Natalie Parde - UIC CS 421 88

Unambiguous
Representations
• Ambiguities arising from figurative language require

advanced solutions, but many semantic ambiguities
can also arise from literal expressions

• To resolve semantic ambiguities, computational
methods must select which from a set of possible
interpretations is most correct, given the
circumstances surrounding the linguistic input

Let’s eat somewhere near SEO.

Let’s eat somewhere near SEO.

Let’s devour some building near SEO!

Let’s eat at a restaurant near SEO!
Natalie Parde - UIC CS 421 89

Vagueness
I want to eat dessert.

Cake?

Cookies?

Ice cream?
Pie?

Canonical Form

• Sentences are ambiguous when they could reasonably be assigned
multiple meaning representations

• However, multiple sentences could also be assigned the same
meaning representation

• Giordano’s serves deep dish pizza.
• They have deep dish pizza at Giordano’s.
• Deep dish pizza is served at Giordano’s.
• You can eat deep dish pizza at Giordano’s.

Natalie Parde - UIC CS 421 91

Inference and Variables

• It’s impossible for a knowledge base to
comprehensively cover all facts about the world,
so computational systems also need to be able
to draw commonsense inferences based on
meaning representations

• Will people who like deep dish pizza want
to eat at Giordano’s?

• We don’t have a fact explicitly specifying
that they do, but we can infer that if they
like deep dish pizza, they will probably
like a restaurant that serves it

Natalie Parde - UIC CS 421 92

Inference

• Inference: A system’s ability to draw valid
conclusions based on the meaning
representations of inputs and its store of
background knowledge

• Systems must be able to draw conclusions
about the truth of propositions that are not
explicitly represented in the knowledge base
but that are logically derivable from the
propositions that are present

Natalie Parde - UIC CS 421 93

Variables

• Variables allow you to build propositions without
requiring a specific instance of something

• Serves(x, DeepDishPizza)
• These propositions can only be successfully

matched by known instances from a knowledge
base that would resolve in a truthful entire
proposition

• Serves(x, DeepDishPizza)
• Serves(Giordano’s, DeepDishPizza) 🙂
• Serves(Two Shades, DeepDishPizza) 🤨

Natalie Parde - UIC CS 421 94

Expressiveness

• Expressive power: The breadth of
ideas that can be represented in a
language

• Meaning representations must be
expressive enough to handle a wide
range of subject matter

Natalie Parde - UIC CS 421 95

This
Week’s
Topics

Natalie Parde - UIC CS 421 96

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing

Thursday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

Model-Theoretic Semantics

Natalie Parde - UIC CS 421

What do most meaning
representation schemes
share in common?
• An ability to represent objects,

properties of objects, and
relations among objects

A model is a formal
construct that stands for
a particular state of
affairs in the world that
we’re trying to represent

Expressions (words or
phrases) in the meaning
representation language
can be mapped to
elements of the model

97

Relevant Terminology
• Vocabulary

• Non-Logical Vocabulary: Open-ended sets of names for objects, properties,
and relations in the world we’re representing

• Logical Vocabulary: Closed set of symbols, operators, quantifiers, and links
that provide the formal means for composing expressions in the language

• Domain: The set of objects that are part of the state of affairs being represented
in the model

• Each object in the non-logical vocabulary corresponds to a unique element
in the domain; however, each element in the domain does not need to be
mentioned in a meaning representation

Natalie Parde - UIC CS 421 98

Additional
Terminology
• For a given domain, objects are elements

• grapes, violets, plums, CS421, Usman, Eli
• Properties are sets of elements corresponding to a

specific characteristic
• purple = {grapes, violets, plums}

• Relations are sets of tuples, each of which contain
domain elements that take part in a specific relation

• TAFor = {(CS421, Usman), (CS421, Eli)}

Natalie Parde - UIC CS 421
99

Functions

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• We create mappings from non-logical
vocabulary to formal denotations using
functions or interpretations

• Assume that we have:
• A collection of restaurant patrons and

restaurants
• Various facts regarding the likes and

dislikes of patrons
• Various facts about the restaurants

• In our current state of affairs (our model)
we’re concerned with four patrons
designated by the non-logical symbols
(elements) Natalie, Devika, Nikolaos,
and Mina

• We’ll use the constants a, b, c, and d to
refer to those respective elements

100

Example
Application • We’re also concerned with three restaurants

designated by the non-logical symbols
Giordano’s, IDOF, and Artopolis

• We’ll use the constants e, f, and g to refer to
those respective elements

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

Natalie Parde - UIC CS 421 101

Example
Application • Finally, we’ll assume that our model deals with

three cuisines in general, designated by the
non-logical symbols Italian, Mediterranean, and
Greek

• We’ll use the constants i, j, and k to refer to
those elements

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

Natalie Parde - UIC CS 421 102

Example
Application

• Now, let’s assume we need to represent a few
properties of restaurants:

• Fast denotes the subset of restaurants that are known
to make food quickly

• TableService denotes the subset of restaurants for
which a waiter will come to your table to take your
order

• We also need to represent a few relations:
• Like denotes the tuples indicating which restaurants

individual patrons like
• Serve denotes the tuples indicating which restaurants

serve specific cuisines

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Natalie Parde - UIC CS 421 103

Example
Application

• This means that we have created the domain
D = {a, b, c, d, e, f, g, i, j, k}

• We can evaluate representations like Natalie
likes IDOF or Giordano’s serves Greek by
mapping the objects in the meaning
representations to their corresponding
domain elements, and any links to the
appropriate relations in the model

• Natalie likes IDOF → a likes f → Like(a, f) 🙂
• Giordano’s serves Greek → e serves k → Serve(e, k) 🤨

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie Parde - UIC CS 421 104

Example
Application

• Thus, we’re just using sets and operations
on sets to ground the expressions in our
meaning representations

• What about more complex sentences?
• Nikolaos likes Giordano’s and Devika likes Artopolis.
• Mina likes fast restaurants.
• Not everybody likes IDOF.

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie Parde - UIC CS 421 105

Example
Application • Plausible meaning representations for the

previous examples will not map directly to
individual entities, properties, or relations!

• They involve:
• Conjunctions
• Equality
• Variables
• Negations

• What we need are truth-conditional
semantics

• This is where first-order logic is useful

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie Parde - UIC CS 421 106

This
Week’s
Topics

Natalie Parde - UIC CS 421 107

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing

Thursday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

What is
first-
order
logic?

Elements of First-Order
Logic

• Term: First-order logic device for representing objects
• Constants
• Functions
• Variables

• Common across all types of terms:
• Each one can be thought of as a way of pointing to a specific object

Natalie Parde - UIC CS 421
109

Elements of First-Order Logic

110

Basic
Elements
of First-
Order
Logic

111

Variables
and
Quantifiers

• Two basic operators in first-order logic are:
• ∃: The existential quantifier

• Pronounced “there exists”
• ∀: The universal quantifier

• Pronounced “for all”
• These two operators make it possible to

represent many more sentences!
• a restaurant → ∃x Restaurant(x)
• all restaurants → ∀x Restaurant(x)

Natalie Parde - UIC CS 421 112

We can combine
these operators
with other basic
elements of
first-order logic
to build logical
representations
of complex
sentences.

• Nikolaos likes Giordano’s and Devika
likes Artopolis.

• Like(Nikolaos, Giordano’s) ∧
Like(Devika, Artopolis)

• Mina likes fast restaurants.
• ∀x Fast(x) → Like(Mina, x)

• Not everybody likes IDOF.
• ∃x Person(x) ∧	¬Like(x, IDOF)

Natalie Parde - UIC CS 421 113

Semantics of First-
Order Logic

• Symbols for objects, properties, and
relations acquire meaning based on
their correspondences to “real”
objects, properties, and relations in
the external world

• We define meaning based on truth-
conditional mappings between
expressions in a meaning
representation and the state of
affairs being modeled

Natalie Parde - UIC CS 421 114

P Q ¬P P∧Q P∨Q P→Q
False False True False False True

False True True False True True

True False False False True False

True True False True True True

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Natalie Parde - UIC CS 421 115

Example: Is the following sentence
valid according to our model?

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Natalie Parde - UIC CS 421

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

116

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

Natalie Parde - UIC CS 421 117

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

Natalie Parde - UIC CS 421 118

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

Natalie Parde - UIC CS 421 119

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

False …not valid!
Natalie Parde - UIC CS 421 120

A few
additional
notes….

• Formulas involving ∃ are true if there is any
substitution of terms for variables that results
in a formula that is true according to the
model

• Formulas involving ∀ are true only if all
substitutions of terms for variables result in
formulas that are true according to the model

Natalie Parde - UIC CS 421 121

How do we
infer facts
not
explicitly
included in
the
knowledge
base?

• Modus ponens: If a conditional
statement is accepted (if p then q), and
the antecedent (p) holds, then the
consequent (q) may be inferred

• More formally:
𝛼
𝑎 ⇒ 𝛽
𝛽

Natalie Parde - UIC CS 421 122

Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

Natalie Parde - UIC CS 421 123

Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

antecedent holds (our model says that
Artopolis is a Greek restaurant) ✔

Natalie Parde - UIC CS 421 124

Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

antecedent holds (our model says that
Artopolis is a Greek restaurant) ✔

consequent may be inferred 🙂

Natalie Parde - UIC CS 421 125

Representing States and Events

States: Conditions or
properties that remain
unchanged over some

period of time

Events: Indicate changes
in some state of affairs

Events can be particularly challenging to
represent in formal logic!

• You may need to:
• Determine the correct number of roles for the event
• Represent facts about different roles associated with the event
• Ensure that all correct inferences can be derived directly from the event representation
• Ensure that no incorrect inferences can be derived from the event representation

• Some events may theoretically take a variable number of arguments
• Natalie drinks.
• Natalie drinks tea.

• However, predicates in first-order logic have fixed arity (they accept a fixed number of
arguments)

Natalie Parde - UIC CS 421 127

How do we
deal with
this?

• Make as many different predicates as are needed
to handle all of the different ways an event can
behave

• Drink1(Natalie)
• Drink2(Natalie, tea)
• Unfortunately, this can be costly (lots of

different predicates would need to be stored
for many words!)

• Another (also not-so-scalable) solution is to use
meaning postulates

• ∀x,y Drink2(x, y) → Drink1(x)
• Finally, you can allow missing arguments

• ∃x Drink(Natalie, x)
• Drink(Natalie, tea)
• Still not perfect …in the example case, it

implies that one always has to be drinking a
specific thing

Natalie Parde - UIC CS 421 128

Instead of regular variables, we can
add event variables.

• Event variable: An argument to the event representation that allows for additional
assertions to be included if needed

• ∃e Drink(Natalie, e)
• If we determine that the actor must drink something specific: ∃e Drink(Natalie, e) ∧

Beverage(e, tea)
• More generally, we could define the representation:

• ∃e Drink(e) ∧ Drinker(e, Natalie) ∧ Beverage(e, tea)
• With this change:

• No need to specify a fixed number of arguments for a given surface predicate
• Logical connections are satisfied without using meaning postulates

Natalie Parde - UIC CS 421 129

Ideally, meaning representations will also
include information about time and aspect.

• Temporal information:
• Event time
• Reference time
• Time of utterance

• Aspectual information:
• Stative: Event captures an aspect of the world at a single time point

• Natalie knew what she wanted to eat.
• Activity: Event occurs over some span of time

• Natalie is eating.
• Accomplishment: Event has a natural end point and results in a particular state

• Natalie ate lunch at Artopolis.
• Achievement: Event happens in an instant, but still results in a particular state

• Natalie finished her meal.

When Mina leaves, Natalie will eat at Artopolis.

Natalie Parde - UIC CS 421 130

Description
Logics

Natalie Parde - UIC CS 421 131

Description
Logics

• Represent knowledge about:
• Categories
• Individuals who belong to those

categories
• Relationships that can hold among

those individuals
• Terminology: The set of categories

comprising a given application domain
• Ontology: Hierarchical representation

of subset/superset relations among
categories

Natalie Parde - UIC CS 421
132

Representation

Natalie Parde - UIC CS 421

Restaurant(x) = Restaurant Restaurant(Giordano’s) =
Restaurant(Giordano’s)

First-order logic Description logics

133

Hierarchical
Structure

• Can be directly specified
using subsumption relations
between concepts

• Subsumption: All
members of category C
are also members of
category D, or 𝐶 ⊑ 𝐷

Natalie Parde - UIC CS 421

Commercial
Establishment

Restaurant

Italian
Restaurant

Greek
Restaurant

Mediterranean
Restaurant

Restaurant
⊑ Commercial	
Establishment

Italian	Restaurant
⊑ Restaurant

Med.	Restaurant
⊑ Restaurant

Greek	Restaurant
⊑ Restaurant

134

Category Membership

• Coverage or disjointness can be further specified using logical operators
• Italian	Restaurant	 ⊑ NOT	Greek	Restaurant
• Restaurant	 ⊑
𝐎𝐑	(Italian	Restaurant, Greek	Restaurant,Mediterranean	Restaurant)

Natalie Parde - UIC CS 421 135

Category Membership

• Relations provide further information about category membership
• Italian	Cuisine	 ⊑ Cuisine
• Italian	Restaurant	 ⊑ Restaurant	 ⊓ ∃hasCuisine.ItalianCuisine	
=	∀𝑥ItalianRestaurant(𝑥) ⟶ Restaurant(𝑥) ∧ (∃𝑦Serves(𝑥, 𝑦) ∧
ItalianCuisine(𝑦))

Natalie Parde - UIC CS 421
136

Hierarchical
Structure

• Relations also allow us to explicitly define necessary and
sufficient conditions for categories

• Italian	Restaurant	 ⊑ Restaurant	 ⊓ ∃hasCuisine.ItalianCuisine
• Greek	Restaurant	 ⊑ Restaurant	 ⊓ ∃hasCuisine.GreekCuisine

Natalie Parde - UIC CS 421
137

Inference Commercial
Establishment

Restaurant

Italian
Restaurant

Greek
Restaurant

Mediterranean
Restaurant

Restaurant
⊑ Commercial	
Establishment

Italian	Restaurant
⊑ Restaurant

Med.	Restaurant
⊑ Restaurant

Greek	Restaurant
⊑ Restaurant

138

Real-World Example of Description Logics

• Web Ontology Language (OWL)
• Formally specifies semantic categories of

the internet through the creation and
deployment of ontologies for application
areas of interest

• Built using a description logic similar to that
described in the previous slides

Natalie Parde - UIC CS 421 139

Summary:
First-Order
Logic

• In model-theoretic semantics, the model serves as a formal
construct representing a particular state of affairs in the world

• First-order logic maps linguistic input to world knowledge
using logical rules

• Core components of a first-order logic model are:
• Objects
• Properties
• Relations

• We can apply truth-conditional logic (and, or, and not
operators) to sentences to determine whether they fit a given
model based on their included terms

• First-order logic makes use of both existential and universal
quantifiers

• Inferences can be drawn from first-order logic statements using
modus ponens

• Description logic models semantic domains using subsets of
first-order logic, restricting expressiveness such that it
guarantees the tractability of certain kinds of inference

Natalie Parde - UIC CS 421 140

