Dependency Parsing and Logical
 Representations of Sentence Meaning

Natalie Parde UIC CS 421

What is dependency parsing?

- Automatically determining directed grammatical and semantic relationships between words
- Semantic: Focused on meaning
- This information is useful for many NLP applications, including:
- Coreference resolution
- Question answering
- Information extraction
- CFGs generate constituent-based

How are dependency grammars different from CFGs?

 representations- Noun phrases, verb phrases, etc.
- These tell us about the syntactic structure, rather than the semantic relationship between words
- Dependency grammars define sentence structure in terms of the relationships between individual words
- Nominal subject, direct object, etc.
- For both, labels are still drawn from a fixed inventory of grammatical relations

Dependency grammars are especially helpful for interpreting
 morphologically rich languages with a relatively free
 word order:

Morphologically rich: Grammatical relationships are indicated by changes to words, rather than sentence position

Free word order: Words can be moved around in a sentence but the overall meaning will remain the same (less reliance on syntax)

Typically, languages that are morphologically richer have less strict syntactic rules

This Week's Topics

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency Parsing

Thursday

Tuesday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

This Week's Topics

Thursday

Tuesday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

Typed Dependency Structure

Comparison with Syntactic Parse

Dependency Relations

- Two components:
- Head
- Dependent
- Heads are linked to the words that are immediately dependent on them
- Relation types describe the dependent's role with respect to its head
- Subject
- Direct object
- Indirect object

Dependency Relations

- Relation types tend to correlate with sentence position and constituent type in English, but there is not an explicit connection between these elements
- In languages with relatively free word order, the information encoded in these relation types often cannot be estimated from constituency trees

Just like with CFGs, there are a variety of taxonomies that can be used to label dependencies between words.

- A couple of the most popular dependency treebanks and tagsets include:
- Stanford dependencies
- https://downloads.cs.stanford.edu/nlp/software/dependen cies manual.pdf
- Universal dependencies
- https://universaldependencies.org/

Recently, most researchers have moved toward using universal dependencies.

- Universal dependencies can be broken into:
- Clausal Relations: Describe syntactic roles that say something about the predicate
- Modifier Relations: Describe the ways that words can modify their heads

Clausal Relations

Modifier Relations

Universal Dependencies

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Universal Dependencies

Structural categories of dependent

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Universal Dependencies

Structural categories of dependent

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Universal Dependencies

Structural categories of dependent

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Universal Dependencies

Structural categories of dependent

ס		Nominals	Clauses	Modifier Words	Function Words
$\xrightarrow[\text { ¢ }]{+}$	Core Arguments of Clausal Predicates	$\begin{gathered} \text { nsubj } \\ \text { obj } \\ \text { iobj } \end{gathered}$	csubj ccomp xcomp What she said about starting the project makes sense. csubj(makes, said)	What she said about starting the project makes sense. csubj(makes, said)	
$$	Non-Core Dependents of Clausal Predicates	obl vocative expl dislocated	advcl	She said you ccomp(said,	aux uld start it now. t)
$\begin{aligned} & \overline{0} \\ & \text { 을 } \\ & \text { 를 } \end{aligned}$	Dependents of Nominals	nmod appos nummod	acl	I consider it al xcomp(consi	det

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Universal Dependencies

Structural categories of dependent

		Nominals	Clauses	Modifier Words	Function Words
		nsubj obj iobj	csubj ccomp xcomp	He was upset when she read her dissertation to him. advcl(upset, read)	
$\begin{aligned} & \mathscr{0} \\ & \stackrel{0}{0} \\ & 0.0 \\ & \stackrel{y}{0} \end{aligned}$	Non-Core Dependents of Clausal Predicates	obl vocative expl dislocated	advcl	advmod discourse	$\begin{aligned} & \text { aux } \\ & \text { cop } \end{aligned}$ mark
	Dependents of Nominals	nmod appos nummod	acl	amod	det clf case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Universal Dependencies

Structural categories of dependent

O		Nominals	Clauses	Modifier Words	Function Words
	Core Arguments of Clausal Predicates	nsubj obj iobj	csubj ccomp xcomp		
	Non-Core Dependents of Clausal Predicates	obl vocative expl dislocated	advcl	There is a docum assignment. acl(document,	t discussing the cussing)
$\begin{aligned} & \overline{0} \\ & \text { D } \\ & \text { OU } \\ & \bar{U} \end{aligned}$	Dependents of Nominals	nmod appos nummod	acl	amod	det clf case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Universal Dependencies

Structural categories of dependent

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Universal Dependencies

Structural categories of dependent

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Universal Dependencies

Structural categories of dependent

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Universal Dependencies

Structural categories of dependent

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Dependency structures are directed graphs

- $G=(V, A)$
- V is a set of vertices
- A is a set of ordered pairs of vertices, or arcs

Dependency Formalisms

- V corresponds to the words in a sentence
- May also include punctuation
- In morphologically rich languages, may include stems and affixes
- Arcs capture the grammatical relationships between those words

In general, dependency structures:

- Must be connected
- Must have a designated root node
- Must be acyclic

Dependency Trees

- Directed graphs (such as those we've seen already) that satisfy the following constraints:
- Single designated root node
- No incoming arcs to the root!
- All vertices except the root node have exactly one incoming arc
- There is a unique path from the root node to each vertex

How to translate from constituent to dependency structures?

Two steps:
1.Identify all head-dependent relations in the constituent tree
2.Identify the correct dependency relations for those head-dependent pairs

This can by done by:

- Marking the head child of each node in a phrase structure, based on a set of rules
- In the dependency structure, make the head of each non-head child depend on the head of the head child
- However, doing this can produce results that are far from perfect!
- Most noun phrases do not have much (or any) internal structure
- Morphological information generally isn't encoded in phrase structure trees

Types of Dependency Parsers

Transition-based

- Build a single tree in a beginning-to-end sweep over the input sentence

Graph-based

Graph

- Search through the space of possible trees for a given sentence, and try to find the tree that maximizes some score

This Week's Topics

Thursday

Tuesday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

Transition-based Dependency Parsing

- Earliest transition-based approach: shiftreduce parsing
- Input tokens are successively shifted onto a stack
- The two top elements of the stack are matched against a set of possible relations provided by some knowledge source
- When a match is found, a headdependent relation between the matched elements is asserted
- Goal is to find a final parse that accounts for all words

- We can build upon shift-reduce parsing by defining transition operators to guide the parser's decisions
- Transition operators work by producing new configurations:
- Stack
- Input buffer of words
- Set of relations representing a dependency tree

Initial configuration:

Transitionbased Parsing

- Stack contains the ROOT node
- Input buffer is initialized with all words in the sentence, in order
- Empty set of relations represents the parse

Final configuration:

- Stack should be empty (except ROOT)
- Input buffer should be empty
- Set of relations represents the parse

Operators

- The operators used in transition-based parsing then perform one of the following tasks:
- Assign the current word as the head of some other word that has already been seen
- Assign some other word that has already been seen as the head of the current word
- Do nothing with the current word

Operators

- More formally, these operators are defined as:
- LeftArc: Asserts a head-dependent relation between the word at the top of the stack and the word directly beneath it (the second word), and removes the second word from the stack
- Cannot be applied when ROOT is the second element in the stack
- Requires two elements on the stack
- RightArc: Asserts a head-dependent relation between the second word and the word at the top of the stack, and removes the word at the top of the stack
- Requires two elements on the stack
- Shift: Removes a word from the front of the input buffer and pushes it onto the stack
- These operators implement the arc standard approach to transition-based parsing

Arc
 Standard Approach to Transitionbased Parsing

- Notable characteristics:
- Transition operators only assert relations between elements at the top of the stack
- Once an element has been assigned its head, it is removed from the stack
- Not available for further processing!
- Benefits:
- Reasonably effective
- Simple to implement

Formal Algorithm: Arc Standard Approach

```
state}\leftarrow{[root], [words], []
while state not final:
    # Choose which transition operator to apply
    transition }\leftarrow\mathrm{ oracle(state)
```

```
    # Apply the operator and create a new state
```

 # Apply the operator and create a new state
 state \leftarrow apply(transition, state)

```
state \leftarrow apply(transition, state)
```


Process ends when:

- All words in the sentence have been consumed
- The ROOT node is the only element remaining on the stack

This is not an example of dynamic programming!

- The arc standard approach is a greedy algorithm
- Oracle chooses a single operation at each step
- Parser proceeds with that choice
- No other options explored
- No backtracking
- Single parse returned at the end

Arc Standard: Example

Input Buffer

```
book me the morning flight
```

Stack \square
root

Arc Standard: Example

Input Buffer

	me	the	morning	flight

Only one item in the stack!
Shift book from the input buffer to the stack
Stack

Arc Standard: Example

Input Buffer

		the	morning	flight

Stack

```
me book root
```

Valid options: Shift, RightArc
Oracle selects Shift

Shift me from the input
buffer to the stack

Arc Standard: Example

Input Buffer

Stack

Valid options: Shift,
RightArc, LeftArc
Oracle selects RightArc
Remove me from the stack

Add relation (book \rightarrow me) to
the set of relations

Arc Standard: Example

Input Buffer

Stack

```
the book root
```

Valid options: Shift, RightArc
Oracle selects Shift
Shift the from the input
buffer to the stack

Arc Standard: Example

Input Buffer

Valid options: Shift, RightArc, LeftArc

Oracle selects Shift

Shift morning from the input buffer to the stack

Arc Standard: Example

Input Buffer

Stack

```
flight morning the book root
```

Valid options: Shift,
RightArc, LeftArc
Oracle selects Shift
Shift flight from the input
buffer to the stack

Arc Standard: Example

Input Buffer

Stack

Valid options: RightArc, LeftArc

Oracle selects LeftArc
Remove morning from the stack

Add relation (flight \rightarrow morning) to the set of relations

Arc Standard: Example

Input Buffer

Stack

Valid options: RightArc, LeftArc

Oracle selects LeftArc
Remove the from the stack

Add relation (flight \rightarrow the) to
the set of relations

Arc Standard: Example

Input Buffer

Stack \square
Valid options: RightArc, LeftArc

Oracle selects RightArc
Remove flight from the stack

Add relation (book \rightarrow flight) to the set of relations

Arc Standard: Example

Input Buffer

Stack

Valid options: RightArc
Oracle selects RightArc
Remove book from the stack

Add relation (root \rightarrow book) to the set of relations

Arc Standard: Example

Input Buffer

Stack

Valid options: None
State is final

A few things worth noting

- We assumed in the previous example that our oracle was always correct ...this is not necessarily (or perhaps not even likely) the case!
- Incorrect choices lead to incorrect parses since the algorithm cannot perform any backtracking
- Alternate sequences may also lead to equally valid parses

How do we get actual dependency labels?

- Parameterize LeftArc and RightArc
- LeftArc(nsubj), RightArc(obj), etc.
- Of course, this makes the oracle's job more difficult (much larger set of operators from which to choose!)

How does the oracle know what to choose?

- Generally, systems use supervised machine learning for this task
- This requires a training set of configurations labeled with correct transition operators
- The oracle learns which transitions to predict for previously-unseen configurations based on extracted features and/or representations for labeled configurations in the training set

What types of machine learning models are used as oracles?

- Commonly:
- Logistic regression
- Support vector machines
- Recently:
- Neural networks

Neural Network-based Oracle

Input Buffer

Stack
the book root

Neural Network-based Oracle

Input Buffer \square \square morning flight

Stack
the book root

Neural Network-based Oracle

Neural Network-based Oracle

Neural Network-based Oracle

This Week's Topics

Dependency Structure
 Transition-Based
 Dependency Parsing
 Graph-Based Dependency

Parsing

Thursday

Tuesday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

Graphbased Dependency Parsing

- Search through the space of possible dependency trees for a given sentence, attempting to maximize some score
- This score is generally a function of the scores of individual subtrees within the overall tree
- Edge-factored approaches determine scores based on the scores of the edges that comprise the tree
- overall_score $(t)=\sum_{e \in t} \operatorname{score}(e)$
- Letting t be a tree for a given sentence, and e be its edges

Why use graph-based methods for dependency parsing?

- Transition-based methods tend to have high accuracy for shorter dependency relations, but lower accuracy as the distance between words increases
- This is largely because transition-based methods are greedy (they can be fooled by seemingly-optimal local solutions)
- Graph-based methods score entire trees, thereby avoiding that issue

Maximum Spanning Tree

- Given an input sentence, construct a fully-connected, weighted, directed graph
- Vertices are input words
- Directed edges represent all possible head-dependent assignments
- Weights reflect the scores for each possible head-dependent assignment, predicted by a supervised machine learning model
- A maximum spanning tree represents the preferred dependency parse for the sentence, as determined by the weights

Maximum Spanning Tree: Example

Maximum Spanning Tree: Example

Two things to keep in mind....

- Every vertex in a spanning tree has exactly one incoming edge
- Absolute values of the edge scores are not critical
- Relative weights of the edges entering a
 vertex are what matter!

How do we know that we have a spanning tree?

- Given a fully-connected graph $\mathrm{G}=(\mathrm{V}$, $E)$, a subgraph $T=(V, F)$ is a spanning tree if:
- It has no cycles
- Each vertex (except the root) has exactly one edge entering it

How do we know that we have a maximum spanning tree?

- If the greedy selection process produces a spanning tree, then that tree is the maximum spanning tree
- However, the greedy selection process may select edges that result in cycles
- If this happens, we can:
- Collapse cycles into new nodes, with edges that previously entered or exited the cycle now entering or exiting the new node
- Recursively apply the greedy selection process to the updated graph until a (maximum) spanning tree is found

Formal Algorithm

```
F}\leftarrow[
T}\leftarrow[
score' }\leftarrow [
for each v in V do:
    bestInEdge }\leftarrow\underset{e=(u,v)\inE}{\operatorname{argmax}}\operatorname{score[e]
    e=(u,v)\inE
    F}\leftarrow\textrm{F
    for each e=(u,v) \inE do:
        score'[e] \leftarrow score[e] - score[bestInEdge]
    if T=(V,F) is a spanning tree:
        return T
    else:
        C }\leftarrow\mathrm{ a cycle in F
        G' }\leftarrow\mathrm{ collapse(G, C)
        T' \leftarrow maxspanningtree(G', root, score') # Recursively call the current function
        T \leftarrow expand(T', C)
        return T
```


Maximum Spanning Tree: Updated Example

How do we train our model to predict edge weights?

- Similar approach to training the oracle in a transition-based parser
- Feature-based edge scoring models might predict weights based on:
- Words, lemmas, parts of speech
- Corresponding features from contexts before and after words
- Word embeddings
- Dependency relation type
- Dependency relation direction
- Distance from head to dependent
- We can also use neural networks for this process
- Dependency parsing is the process of automatically determining directed relationships between words in a source sentence
- Many dependency tagsets exist, but currently the most common tagset is the set of universal dependencies
- Dependency parsers can be transitionbased or graph-based
- A popular transition-based method is the arc standard approach
- A popular graph-based method is the maximum spanning tree approach
- Both make use of supervised machine learning to aid the decision-making process

This Week's Topics

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency Parsing

Thursday
Tuesday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

Why do we need meaning representations?

- Somehow, we need to bridge the gap between linguistic input and world knowledge to perform semantic processing tasks such as:
- Answering essay questions on exams
- Deciding what to order at a restaurant
- Detecting sarcasm
- Following recipes

Logical Representations of Meaning

- Goal: Represent commonsense world knowledge in logical form
- There are many ways to represent meaning:
- First-Order Logic
- Semantic networks
- Conceptual dependencies
- Frame-based representations
- All of these approaches assume that meaning representations consist of structures composed of symbols
- Symbols: Representational vocabulary

Sample Meaning Representations

I have a pumpkin.

- Correspond to objects, properties of objects, and relations among objects
- Symbols link linguistic input (words) to meaning (world knowledge)

Symbols

Having	
Haver:	Speaker
HadThing:	Pumpkin

- Meaning representations determine the relationship between (a) the meaning of a sentence and (b) the world as we know it
- Computational systems can verify the truth of a meaning representation for a sentence by matching it with knowledge base representations
- Knowledge Base: A source of information about the world

Verifiability

- Example proposition: Giordano's serves deep dish pizza.
- We can represent this as: Serves(Giordano's, DeepDishPizza)
- To verify the truth of this proposition, we would search a knowledge base containing facts about restaurants
- If we found a fact matching this, we have verified the proposition
- If not, we must assume that the fact is incorrect or, at best, our knowledge base is incomplete

Unambiguous Representations

- Ambiguity does not stop at syntax!
- Semantic ambiguities are everywhere:
- Sarcasm
- Idiom
- Metaphor
- Hyperbole
- Expressions may have different meaning representations depending on the circumstances in which they occur

- Ambiguities arising from figurative language require advanced solutions, but many semantic ambiguities can also arise from literal expressions
- To resolve semantic ambiguities, computational methods must select which from a set of possible interpretations is most correct, given the circumstances surrounding the linguistic input

Let's devour some building near SEO!

Let's eat at a restaurant near SEO!

Vagueness

- Closely related to ambiguity
- However, vagueness does not give rise to multiple representations
- In fact, it is advantageous for meaning representations to maintain a certain level of vagueness
- Otherwise, you may be "overfitting" to your set of example sentences

Ganonical Form

- Sentences are ambiguous when they could reasonably be assigned multiple meaning representations
- However, multiple sentences could also be assigned the same meaning representation
- Giordano's serves deep dish pizza.
- They have deep dish pizza at Giordano's.
- Deep dish pizza is served at Giordano's.
- You can eat deep dish pizza at Giordano's.

Inference and Variables

- It's impossible for a knowledge base to comprehensively cover all facts about the world, so computational systems also need to be able to draw commonsense inferences based on meaning representations
- Will people who like deep dish pizza want to eat at Giordano's?
- We don't have a fact explicitly specifying that they do, but we can infer that if they like deep dish pizza, they will probably like a restaurant that serves it

Inference

- Inference: A system's ability to draw valid conclusions based on the meaning representations of inputs and its store of background knowledge
- Systems must be able to draw conclusions about the truth of propositions that are not explicitly represented in the knowledge base but that are logically derivable from the propositions that are present

Variables

- Variables allow you to build propositions without requiring a specific instance of something
- Serves(x, DeepDishPizza)
- These propositions can only be successfully matched by known instances from a knowledge base that would resolve in a truthful entire proposition
- Serves(x, DeepDishPizza)
- Serves(Giordano’s, DeepDishPizza)
- Serves(Two Shades, DeepDishPizza) (3)

Expressiveness

- Expressive power: The breadth of ideas that can be represented in a language
- Meaning representations must be expressive enough to handle a wide range of subject matter

This Week's Topics

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency Parsing

Thursday
Tuesday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

Model-Theoretic Semantics

What do most meaning representation schemes share in common?

- An ability to represent objects, properties of objects, and relations among objects

A model is a formal construct that stands for a particular state of affairs in the world that we're trying to represent

Expressions (words or phrases) in the meaning representation language can be mapped to elements of the model

Relevant Terminology

- Vocabulary
- Non-Logical Vocabulary: Open-ended sets of names for objects, properties, and relations in the world we're representing
- Logical Vocabulary: Closed set of symbols, operators, quantifiers, and links that provide the formal means for composing expressions in the language
- Domain: The set of objects that are part of the state of affairs being represented in the model
- Each object in the non-logical vocabulary corresponds to a unique element in the domain; however, each element in the domain does not need to be mentioned in a meaning representation

Additional Terminology

- For a given domain, objects are elements
- grapes, violets, plums, CS421, Usman, Eli
- Properties are sets of elements corresponding to a specific characteristic
- purple $=\{$ grapes, violets, plums $\}$
- Relations are sets of tuples, each of which contain domain elements that take part in a specific relation
- TAFor $=\{($ CS421, Usman $),(C S 421$, Eli $)\}$
- We create mappings from non-logical vocabulary to formal denotations using functions or interpretations
- Assume that we have:
- A collection of restaurant patrons and restaurants
- Various facts regarding the likes and dislikes of patrons
- Various facts about the restaurants
- In our current state of affairs (our model) we're concerned with four patrons designated by the non-logical symbols (elements) Natalie, Devika, Nikolaos, and Mina
- We'll use the constants a, b, c, and d to refer to those respective elements

Example Application

```
patron = {Natalie, Devika,
Nikolaos, Mina} = {a,b,c,d}
```

- We're also concerned with three restaurants designated by the non-logical symbols Giordano's, IDOF, and Artopolis
- We'll use the constants e, f, and g to refer to those respective elements

Example Application

```
patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}
```

- Finally, we'll assume that our model deals with three cuisines in general, designated by the non-logical symbols Italian, Mediterranean, and Greek
- We'll use the constants i, j, and k to refer to those elements

```
restaurants = {Giordano's, IDOF,
Artopolis} = {e,f,g}
```


Example Application

```
patron = {Natalie, Devika,
Nikolaos, Mina} = {a,b,c,d}
```

restaurants $=\{$ Giordano's, IDOF, Artopolis $\}=\{e, f, g\}$

```
cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}
```

- Now, let's assume we need to represent a few properties of restaurants:
- Fast denotes the subset of restaurants that are known to make food quickly
- TableService denotes the subset of restaurants for which a waiter will come to your table to take your order
- We also need to represent a few relations:
- Like denotes the tuples indicating which restaurants individual patrons like
- Serve denotes the tuples indicating which restaurants serve specific cuisines

Example Application

patron $=\{$ Natalie, Devika,
Nikolaos, Mina $\}=\{a, b, c, d\}$
restaurants $=\{$ Giordano's, IDOF,
Artopolis $\}=\{e, f, g\}$

```
cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}
```

Fast $=\{\dagger\}$
TableService $=\{\mathrm{e}, \mathrm{g}\}$
Likes $=\{(a, e),(a, f),(a, g),(b, g)$,
(c, e), (d, f)\}
Serve $=\{(\mathrm{e}, \mathrm{i}),(\mathrm{f}, \mathrm{j}),(\mathrm{g}, \mathrm{k})\}$

- This means that we have created the domain $D=\{a, b, c, d, e, f, g, i, j, k\}$
- We can evaluate representations like Natalie likes IDOF or Giordano's serves Greek by mapping the objects in the meaning representations to their corresponding domain elements, and any links to the appropriate relations in the model
- Natalie likes IDOF \rightarrow a likes $f \rightarrow$ Like $(a, f):()$
- Giordano's serves Greek \rightarrow e serves $k \rightarrow$ Serve (e, k) (20

Example Application

patron $=\{$ Natalie, Devika,
Nikolaos, Mina $\}=\{a, b, c, d\}$
restaurants $=\{$ Giordano's, IDOF,
Artopolis $\}=\{e, f, g\}$
cuisines = \{Italian,
Mediterranean, Greek $\}=\{i, j, k\}$

```
Fast = {f}
TableService = {e,g}
Likes ={(a,e), (a,f), (a,g), (b,g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}
```

- Thus, we're just using sets and operations on sets to ground the expressions in our meaning representations
- What about more complex sentences?
- Nikolaos likes Giordano's and Devika likes Artopolis.
- Mina likes fast restaurants.
- Not everybody likes IDOF.

Example Application

```
patron \(=\{\) Natalie, Devika,
Nikolaos, Mina \(\}=\{a, b, c, d\}\)
```

restaurants $=\{$ Giordano's, IDOF,
Artopolis $\}=\{e, f, g\}$

```
cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}
```

```
Fast = {f}
TableService = {e,g}
Likes ={(a,e), (a,f), (a,g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}
```

- Plausible meaning representations for the previous examples will not map directly to individual entities, properties, or relations!
- They involve:
- Conjunctions
- Equality
- Variables
- Negations
- What we need are truth-conditional semantics
- This is where first-order logic is useful

This Week's Topics

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency Parsing

Thursday

Tuesday

Meaning Representations
Model-Theoretic
Semantics
First-Order Logic

- A meaning representation language (a way to represent knowledge in a way that is computationally verifiable and supports semantic inference)

Elements of First-Order Logic

- Term: First-order logic device for representing objects
- Constants
- Functions
- Variables
- Common across all types of terms:
- Each one can be thought of as a way of pointing to a specific object

Elements of First-Order Logic

- Constants: Specific objects in the world being described
- Conventionally depicted as single capitalized letters (A, B) or words (Natalie, Devika)
- Refer to exactly one object, although objects can have more than one constant that refers to them
- Functions: Concepts that are syntactically equivalent to single-argument predicates
- Can refer to specific objects without having to associate a named constant with them, e.g., LocationOf(Giordano's)
- Variables: Provide the ability to make assertions and draw inferences without having to refer to a specific named object
- Conventionally depicted as single lowercase letters

Basic Elements of FirstOrder Logic

- Predicates: Symbols that refer to the relations between a fixed number of objects in the domain
- Can have one or more arguments
- Serve(Giordano's, Italian)
- Relates two objects
- Restaurant(Giordano's)
- Asserts a property of a single object
- Predicates can be put together using logical connectives
- and \wedge
- or V
- implies \rightarrow
- They can also be negated
- not $ᄀ$

Variables
 and
 Quantifiers

- Two basic operators in first-order logic are:
- \exists : The existential quantifier
- Pronounced "there exists"
- \forall : The universal quantifier
- Pronounced "for all"
- These two operators make it possible to represent many more sentences!
- a restaurant $\rightarrow \exists x$ Restaurant (x)
- all restaurants $\rightarrow \forall x$ Restaurant(x)

We can combine these operators with other basic elements of first-order logic to build logical representations of complex sentences.

- Nikolaos likes Giordano's and Devika likes Artopolis.
- Like(Nikolaos, Giordano's) ^ Like(Devika, Artopolis)
- Mina likes fast restaurants.
- $\forall x$ Fast(x) \rightarrow Like(Mina, x$)$
- Not everybody likes IDOF.
- $\exists x$ Person(x) ^ \neg Like(x, IDOF)

Semantics of FirstOrder Logic

- Symbols for objects, properties, and relations acquire meaning based on their correspondences to "real" objects, properties, and relations in the external world
- We define meaning based on truthconditional mappings between

\mathbf{P}	\mathbf{Q}	$\neg \mathbf{P}$	$\mathbf{P \wedge Q}$	$\mathbf{P \vee Q}$	$\mathbf{P} \rightarrow \mathbf{Q}$
False	False	True	False	False	True
False	True	True	False	True	True
True	False	False	False	True	False
True	True	False	True	True	True

Example: Is the following sentence valid according to our model?

patron $=\{$ Natalie, Devika,
Nikolaos, Mina $\}=\{a, b, c, d\}$
restaurants $=\{$ Giordano's, IDOF,
Artopolis $\}=\{e, f, g\}$

```
cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}
```

```
Fast = {f}
TableService = {e,g}
Likes ={(a,e), (a,f), (a,g), (b,g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}
```


Example: Is the following sentence valid according to our model?

patron $=\{$ Natalie, Devika,
Nikolaos, Mina $\}=\{a, b, c, d\}$
restaurants $=\{$ Giordano's, IDOF,
Artopolis $\}=\{e, f, g\}$

```
cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}
```

Natalie likes Giordano's and Devika likes Giordano's.

Likes(Natalie, Giordano's) ^ Likes(Devika, Giordano's)

```
Fast = {f}
TableService = {e,g}
Likes ={(a,e), (a,f), (a,g), (b,g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}
```


Example: Is the following sentence valid according to our model?

patron $=\{$ Natalie, Devika,
Nikolaos, Mina $\}=\{a, b, c, d\}$
restaurants $=\{$ Giordano's, IDOF,
Artopolis $\}=\{e, f, g\}$

```
cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}
```

```
Fast = {f}
TableService = {e,g}
Likes ={(a,e), (a,f), (a,g), (b,g),
(c, e), (d,f)}
Serve = {(e, i), (f, j), (g, k)}
```

Natalie likes Giordano's and Devika likes Giordano's.

Likes(Natalie, Giordano's) ^ Likes(Devika, Giordano's)

```
Likes(a, e) ^ Likes(b, e)
```


Example: Is the following sentence valid according to our model?

patron $=\{$ Natalie, Devika,
Nikolaos, Mina $\}=\{a, b, c, d\}$
restaurants $=\{$ Giordano's, IDOF,
Artopolis $\}=\{e, f, g\}$
cuisines $=\{$ Italian,
Mediterranean, Greek $\}=\{\mathrm{i}, \mathrm{j}, \mathrm{k}\}$

Natalie likes Giordano's and Devika likes Giordano's.

Likes(Natalie, Giordano's) ^ Likes(Devika, Giordano's)

```
Fast = {f}
TableService = {e,g}
Likes ={(a,e), (a,f), (a,g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}
```


Example: Is the following sentence valid according to our model?

patron $=\{$ Natalie, Devika,
Nikolaos, Mina $\}=\{a, b, c, d\}$
restaurants $=\{$ Giordano's, IDOF,
Artopolis $\}=\{e, f, g\}$
cuisines $=\{$ Italian,
Mediterranean, Greek $\}=\{\mathrm{i}, \mathrm{j}, \mathrm{k}\}$

Mediterranean, Greek $\}=\{i, j, k\}$
Fast $=\{f\}$
TableService $=\{e, g\}$
Likes $=\{(a, e),(a, f),(a, g),(b, g)$,
$(c, e),(d, f)\}$
Serve $=\{(e, i),(f, j),(g, k)\}$

Natalie likes Giordano's and Devika likes Giordano's.

Likes(Natalie, Giordano's) ^ Likes(Devika, Giordano's)

Example: Is the following sentence valid according to our model?

patron $=\{$ Natalie, Devika,
Nikolaos, Mina $\}=\{a, b, c, d\}$
restaurants $=\{$ Giordano's, IDOF,
Artopolis $\}=\{e, f, g\}$
cuisines $=\{$ Italian,
Mediterranean, Greek $\}=\{\mathrm{i}, \mathrm{j}, \mathrm{k}\}$

Natalie likes Giordano's and Devika likes Giordano's.

Likes(Natalie, Giordano's) ^ Likes(Devika, Giordano's)

A few additional notes...

- Formulas involving \exists are true if there is any substitution of terms for variables that results in a formula that is true according to the model
- Formulas involving \forall are true only if all substitutions of terms for variables result in formulas that are true according to the model

How do we infer facts not explicitly included in the knowledge base?

- Modus ponens: If a conditional statement is accepted (if p then q), and the antecedent (p) holds, then the consequent (q) may be inferred
- More formally:

$$
\frac{\stackrel{\alpha}{a \Rightarrow \beta}}{\beta}
$$

Example: Inference

GreekRestaurant(Artopolis) $\forall x$ GreekRestaurant $(x) \Rightarrow \operatorname{Serves}(x$, GreekFood)
 Serves(Artopolis, GreekFood)

conditional statement accepted $\sqrt{ }$

Example: Inference

GreekRestaurant(Artopolis)

 $\forall x$ GreekRestaurant $(x) \Rightarrow \operatorname{Serves}(x$, GreekFood)Serves(Artopolis, GreekFood)
conditional statement accepted $\sqrt{ }$

Example: Inference

GreekRestaurant(Artopolis)

 $\forall x$ GreekRestaurant $(x) \Rightarrow \operatorname{Serves}(x$, GreekFood)
Serves(Artopolis, GreekFood)

conditional statement accepted $\sqrt{ }$
consequent may be inferred :)

Representing States and Events

States: Conditions or properties that remain unchanged over some period of time

Events: Indicate changes in some state of affairs

Events can be particularly challenging to represent in formal logic!

- You may need to:
- Determine the correct number of roles for the event
- Represent facts about different roles associated with the event
- Ensure that all correct inferences can be derived directly from the event representation
- Ensure that no incorrect inferences can be derived from the event representation
- Some events may theoretically take a variable number of arguments
- Natalie drinks.
- Natalie drinks tea.
- However, predicates in first-order logic have fixed arity (they accept a fixed number of arguments)

How do we deal with this?

- Make as many different predicates as are needed to handle all of the different ways an event can behave
- Drink ${ }_{1}$ (Natalie)
- Drink ${ }_{2}$ Natalie, tea)
- Unfortunately, this can be costly (lots of different predicates would need to be stored for many words!)
- Another (also not-so-scalable) solution is to use meaning postulates
- $\forall x, y \operatorname{Drink}_{2}(x, y) \rightarrow \operatorname{Drink}_{1}(x)$
- Finally, you can allow missing arguments
- $\exists x$ Drink(Natalie, x)
- Drink(Natalie, tea)
- Still not perfect ...in the example case, it implies that one always has to be drinking a specific thing

Instead of regular variables，we can add event variables．

－Event variable：An argument to the event representation that allows for additional assertions to be included if needed
－ヨe Drink（Natalie，e）
－If we determine that the actor must drink something specific：ヨe Drink（Natalie，e）\wedge Beverage（e，tea）
－More generally，we could define the representation：
－ヨe Drink $(e) \wedge$ Drinker $(e$, Natalie）\wedge Beverage $(e$, tea）
－With this change：
－No need to specify a fixed number of arguments for a given surface predicate
－Logical connections are satisfied without using meaning postulates

Ideally, meaning representations will also include information about time and aspect.

- Temporal information:
- Event time
- Reference time

When Mina leaves, Natalie will eat at Artopolis.

- Time of utterance
- Aspectual information:
- Stative: Event captures an aspect of the world at a single time point
- Natalie knew what she wanted to eat.
- Activity: Event occurs over some span of time
- Natalie is eating.
- Accomplishment: Event has a natural end point and results in a particular state
- Natalie ate lunch at Artopolis.
- Achievement: Event happens in an instant, but still results in a particular state
- Natalie finished her meal.

Description Logics

- How to add increased structure to semantics defined by models?
- Description Logics: Different logical approaches that correspond to subsets of firstorder logic
- More specific constraints make it possible to model more specific forms of inference
- Represent knowledge about:
- Categories
- Individuals who belong to those categories
- Relationships that can hold among those individuals
- Terminology: The set of categories comprising a given application domain
- Ontology: Hierarchical representation of subset/superset relations among categories

Representation

Hierarchical Structure

- Can be directly specified using subsumption relations between concepts
- Subsumption: All members of category C are also members of category D, or $C \sqsubseteq D$

Commercial Establishment

Greek Restaurant ㄷ Restaurant

Category Membership

- Coverage or disjointness can be further specified using logical operators
- Italian Restaurant \subseteq NOT Greek Restaurant
- Restaurant ㄷ OR (Italian Restaurant, Greek Restaurant, Mediterranean Restaurant)

Category Membership

- Relations provide further information about category membership
- Italian Cuisine ㄷ Cuisine
- Italian Restaurant \subseteq Restaurant $\square \exists$ hasCuisine.ItalianCuisine $=\forall x$ ItalianRestaurant $(x) \rightarrow \operatorname{Restaurant}(x) \wedge(\exists y \operatorname{Serves}(x, y) \wedge$ ItalianCuisine (y))

Hierarchical Structure

- Relations also allow us to explicitly define necessary and sufficient conditions for categories
- Italian Restaurant \subseteq Restaurant $\square \exists$ hasCuisine.ItalianCuisine
- Greek Restaurant \subseteq Restaurant $\sqcap \exists$ hasCuisine.GreekCuisine

Inference

- Subsumption as a form of inference
- Based on the facts in our terminology, does a superset/subset relationship exist between two concepts?

Greek Restaurant
\sqsubseteq Restaurant

Real-World Example of Description Logics

- Web Ontology Language (OWL)
- Formally specifies semantic categories of the internet through the creation and deployment of ontologies for application areas of interest
- Built using a description logic similar to that described in the previous slides

- In model-theoretic semantics, the model serves as a formal construct representing a particular state of affairs in the world
- First-order logic maps linguistic input to world knowledge using logical rules
- Core components of a first-order logic model are:
- Objects
- Properties
- Relations
- We can apply truth-conditional logic (and, or, and not operators) to sentences to determine whether they fit a given model based on their included terms
- First-order logic makes use of both existential and universal quantifiers
- Inferences can be drawn from first-order logic statements using modus ponens
- Description logic models semantic domains using subsets of first-order logic, restricting expressiveness such that it guarantees the tractability of certain kinds of inference

